• Title/Summary/Keyword: intracellular oxidative stress

Search Result 390, Processing Time 0.024 seconds

Effects of Aucubin Isolated from Eucommia ulmoides on UVB-induced Oxidative Stress in Human Keratinocytes HaCaT

  • Ho, Jin-Nyoung;Cho, Hong-Yon;Lim, Eun-Jeong;Kim, Hye-Kyung
    • Food Science and Biotechnology
    • /
    • v.18 no.2
    • /
    • pp.475-480
    • /
    • 2009
  • Ultraviolet B (UVB) radiation provokes the generation of reactive oxygen species (ROS) in the cells and skin, which induce oxidative stress in the exposed cells, leading to photoaging and cancer. Using the human keratinocytes HaCaT cell line, we investigated the photoprotective effects of aucubin isolated from Eucommia ulmoides. Pretreatment with aucubin markedly suppressed UVB-induced oxidative stress, which manifests as a decrease in intracellular lipid peroxidation, elevation of catalase activity, and reduced glutathione content. In addition, aucubin significantly reduced expression of matrix metalloproteinase-1 (MMP-1) protein (54%) and mRNA. Taken together, these results suggest that aucubin may offer protection against UVB-induced oxidative stress and may be used as a potential agent in prevention of UVB-induced photoaging.

Ingestion of Polystyrene Microplastics Acutely Induces Oxidative Stress in the Marine Medaka Oryzias javanicus

  • Nam, Sang-Eun;Jung, Jee-Hyun;Rhee, Jae-Sung
    • Journal of Marine Life Science
    • /
    • v.6 no.1
    • /
    • pp.31-37
    • /
    • 2021
  • Larvae from the marine medaka fish Oryzias javanicus were exposed with polystyrene microplastics (MPs) for 24 h. Exposure to waterborne fluorescent MPs showed clear ingestion and egestion in feces. Under constant MPs, the concentration of dissolved oxygen significantly decreased in 24 h compared to the control. Significant intracellular reactive oxygen species and malondialdehyde contents were detected in larvae, indicating oxidative stress and lipid peroxidation. Significant elevations in mRNA expressions of heat shock protein 70 and antioxidant defense system genes (glutathione reductase, glutathione peroxidase, catalase, and superoxide dismutase) were measured with increases in enzymatic activity of oxidative stress-related proteins. Taken together, the alterations to the molecular and biochemical components suggested that waterborne MPs had an oxidative stress effect on marine medaka larvae.

Protective Effects of Chungkookjang Extract on High Glucose Induced Oxidative Stress in LLC-PK1 Cells

  • Yi, Na-Ri;Seo, Kyoung-Chun;Choi, Ji-Myung;Cho, Eun-Ju;Song, Young-Ok;Han, Ji-Sook
    • Preventive Nutrition and Food Science
    • /
    • v.13 no.2
    • /
    • pp.84-89
    • /
    • 2008
  • This study was designed to investigate the protective effect of a methanol extract of Chungkookjang (CKJ) on high glucose induced oxidative stress in LLC-$PK_1$ cells (renal tubular epithelial cells), which are susceptible to oxidative stress. Freeze dried CKJ powder was extracted with methanol, and the extract solution was concentrated, and then used in this study. To determine the protective effect of CKJ extract, oxidative stress was induced by exposing of LLC-$PK_1$ cells to high glucose (30 mM) or normal glucose (5 mM) for 24 hr. Exposure of LLC-$PK_1$ cells to high glucose for 24 hr resulted in a significant (p<0.05) decrease in cell viability, catalase, SOD and GSH-px activity and a significant (p<0.05) increase in intracellular ROS level and thiobarbituric acid reactive substances (TBARS) formation in comparison to the cells treated with 5 mM glucose. CKJ extract treatment decreased intracellular ROS level and TBARS formation, and increased cell viability and activities of antioxidant enzymes including catalase, SOD and GSH-px in high glucose pretreated LLC-$PK_1$ cells. These results suggest that CKJ extract may be able to protect LLC-$PK_1$ cells from high glucose-induced oxidative stress, partially through the antioxidative defense systems.

Hepatoprotective effect of Ikwiseungyang-tang via Nrf2 activation (Nrf2 활성화를 통한 익위승양탕(益胃升陽湯)의 간세포 보호 효과)

  • Jin, Hyo Jeong;Park, Sang Mi;Kim, Eun Ok;Kim, Sang Chan
    • Herbal Formula Science
    • /
    • v.29 no.4
    • /
    • pp.167-179
    • /
    • 2021
  • Objectives : Oxidative stress is a important cause of liver disease, and regulation of oxidative stress is essential to maintain the normal metabolic function of the liver. Until a recent date, there has been no studies on the hepatoprotective effect of Ikwiseungyang-tang (IWSYT). Therefore, this study aims to demonstrate the hepatoprotective effect of IWSYT and its related molecular mechanisms on arachidonic acid (AA) + iron induced oxidative stress model in HepG2 cells. Methods : To determine the cytoprotective effect of IWSYT against AA + iron-induced oxidative stress, cell viability, apoptosis-related proteins, intracellular reactive oxygen species (ROS), GSH, and mitochondrial membrane potential (MMP) were measured. Nuclear factor erythroid 2-related factor 2 (Nrf2) activation was analyzed by immunoblot analysis. In addition, Nrf2 transcription activation through ARE binding was measured by reporter gene assays, and the expression of the Nrf2 target antioxidant genes were confirmed by immunoblot analysis. Results : IWSYT increased cell viability from cell death induced by AA + Iron, and inhibited apoptosis by regulating apoptosis-related proteins. Furthermore, IWSYT protected cells by inhibiting intracellular ROS production, GSH depletion, and MMP degradation. Nrf2 activation was increased by IWSYT, and Nrf2 target genes were activated by IWSYT too. Conclusions : These results suggest that IWSYT can protect hepatocytes from oxidative stress through Nrf2 activation and can be potentially applied in the prevention and treatment of liver damage.

A novel potassium channel opener, KR-31378, protects cortex neurons from oxidative injury by restoring antioxidant enzyme activities and glutathione levels

  • Kim, Sun-Ok;Cho, In-Sun;Lee, Dong-Ha;Lim, Hong;Yoo, Sung-Eun
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.197.1-197.1
    • /
    • 2003
  • Neuronal hyperexcitability followed by high level of intracellular calcium and oxidative stress play critical roles in neuronal cell death in stroke and neurotrauma. Hence, KR-31378, a novel benzopyran derivative was designed as a new therapeutic strategy for neuroprotection possessing both anti-oxidant and potassium channel modulating activities. In the present study, we tested for its neuroprotective efficacy against oxidative stress-induced cell death in primary cortical cultures and further investigated its neuroprotective mechanism. (omitted)

  • PDF

Anti-oxidative Effect of Blueberry Duke Extract in Caenorhabditis elegans (블루베리 듀크 추출물의 예쁜꼬마선충 내의 항산화 효과)

  • Kim, Jun Hyeong;An, Chang Wan;Kim, Yeong Jee;Noh, Yun Jeong;Kim, Su Jin;Jeong, Seong-Yeop;Jeong, Do-Youn;Hwang, In Hyun;Kim, Dae Keun
    • Korean Journal of Pharmacognosy
    • /
    • v.48 no.3
    • /
    • pp.219-225
    • /
    • 2017
  • We investigated the anti-oxidative effect of the blueberry duke (Vaccinium corymbosum L., Ericaceae) ethanol extract in Caenorhabditis elegans model. The ethanol extract of blueberry duke showed relatively significant DPPH radical scavenging and superoxide quenching activities. To prove antioxidant activity of the extract, we checked the activities of superoxide dismutase (SOD), catalase, intracellular ROS, and oxidative stress tolerance in C. elegans. In addition, to verify if the increased stress tolerance of C. elegans by treating with the extract was due to regulation of stress-response genes, we checked SOD-3 expression using a transgenic strain. As a consequence, the blueberry duke ethanol extract increased SOD and catalase activities of C. elegans, and reduced intracellular ROS accumulation in a dose-dependent manner. Besides, blueberry duke ethanol extract-treated CF1553 worms showed higher SOD-3::GFP intensity.

UV-responsive intracellular signaling pathways: MAPK, p53, and their crosstalk

  • Matsuda, Naoki
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.229-232
    • /
    • 2002
  • There are two distinct UV-responsive signaling pathways in UV-irradiated mammalian cells, i.e., the DNA damage-dependent and -independent pathways. The former occurs in nucleus and results in growth arrest and apoptosis via post-translational modification of p53. The latter is initiated by oxidative stress and/or by damages in cell membrane or cytoplasm, which activate signaling cascade through intracellular molecules including mitogen activated protein kinases (MAPK). In normal human fibroblastic cells, all of MAPK family members, extracellular signal-related kinases (ERK), c-Jun N-terminal kinases (JNK) and p38, were rapidly phosphorylated following UV-irradiation. ERK phosphorylation was suppressed by an inhibitor of receptor tyrosine kinases (RTK). As ERK usually responds to mitogenic stimuli from RTK ligands, UV-induced ERK phosphorylation may be linked to the proliferation of survived cells. In contrast, phosphorylation of JNK and p38, as well as apoptosis, were modulated by the level of UV-generated oxidative stress Therefore, JNK and p38 may take part in oxidative stress-mediated apoptosis. Phosphorylation of p53 at Ser and Thr residues are essential for stabilization and activation of p53. Among several sites reported, we confirmed phosphorylation at Ser-15 and Ser-392 after UV-irradiation. Both of these were inhibited by a phosphoinositide 3-kinase inhibitor, presumably due to the shutdown of signals from DNA damage to p53. Phosphorylation at Ser-392 was also sensitive to an antioxidant and a p38 inhibitor, suggesting that Ser-392 of p53 is one of the possible points where DNA damage-dependent and -independent apoptic signals merge. Thus, MAPK pathway links UV-induced intracellular signals to the nuclear responses and modifies DNA damage-dependent cellular outcome, resulting in the determination of cell death.

  • PDF

Inhibition of Store-Operated Calcium Entry Protects Endothelial Progenitor Cells from H2O2-Induced Apoptosis

  • Wang, Yan-Wei;Zhang, Ji-Hang;Yu, Yang;Yu, Jie;Huang, Lan
    • Biomolecules & Therapeutics
    • /
    • v.24 no.4
    • /
    • pp.371-379
    • /
    • 2016
  • Store-operated calcium entry (SOCE), a major mode of extracellular calcium entry, plays roles in a variety of cell activities. Accumulating evidence indicates that the intracellular calcium ion concentration and calcium signaling are critical for the responses induced by oxidative stress. The present study was designed to investigate the potential effect of SOCE inhibition on $H_2O_2$-induced apoptosis in endothelial progenitor cells (EPCs), which are the predominant cells involved in endothelial repair. The results showed that $H_2O_2$-induced EPC apoptosis was reversed by SOCE inhibition induced either using the SOCE antagonist ML-9 or via silencing of stromal interaction molecule 1 (STIM1), a component of SOCE. Furthermore, SOCE inhibition repressed the increases in intracellular reactive oxygen species (ROS) levels and endoplasmic reticulum (ER) stress and ameliorated the mitochondrial dysfunction caused by $H_2O_2$. Our findings provide evidence that SOCE inhibition exerts a protective effect on EPCs in response to oxidative stress induced by $H_2O_2$ and may serve as a potential therapeutic strategy against vascular endothelial injury.

Anti-oxidative Effect of Piperine from Piper nigrum L. in Caenorhabditis elegans

  • Park, Hyun Mee;Kim, Jun Hyeong;Kim, Dae Keun
    • Natural Product Sciences
    • /
    • v.25 no.3
    • /
    • pp.255-260
    • /
    • 2019
  • Piper nigrum L. (Piperaceae), which is a well-known food seasoning, has been used as a traditional medicine for the treatment of vomiting, abdominal pain, diarrhea and anorexia in Korea, China and Japan. Methanol extract from the fruit of P. nigrum was successively partitioned as n-hexane, methylene chloride, ethyl acetate, n-butanol and $H_2O$ soluble fractions. Among those fractions the ethyl acetate soluble fraction showed the most potent DPPH radical scavenging activity, and piperine was isolated from the ethyl acetate fraction. To know the antioxidant activity of piperine, we tested the activities of superoxide dismutase (SOD) and catalase together with oxidative stress tolerance and intracellular ROS level in Caenorhabditis elegans. To investigate whether piperine-mediated increased stress tolerance was due to regulation of stress-response gene, we quantified SOD-3 expression using transgenic strain including CF1553. Consequently, piperine enhanced SOD and catalase activities of C. elegans, and reduced intracellular ROS accumulation in a dose-dependent manner. Moreover, piperine-treated CF1553 worms exhibited significantly higher SOD-3::GFP intensity.

A comparison of antioxidant activity of Korean White and Red Ginsengs on H2O2-induced oxidative stress in HepG2 hepatoma cells

  • Sohn, Sang-Hyun;Kim, Si-Kwan;Kim, Young-Ock;Kim, Hyung-Don;Shin, Yu-Su;Yang, Seung-Ok;Kim, Seung-Yu;Lee, Sang-Won
    • Journal of Ginseng Research
    • /
    • v.37 no.4
    • /
    • pp.442-450
    • /
    • 2013
  • The aim of this study was to determine and compare the preventive effect of Korean White Ginseng and Red Ginseng on oxidative stress in $H_2O_2$-treated HepG2 cells. The roots of ginseng were extracted with 70% methanol and partitioned with butanol to obtain saponin fractions, which have been known as bioactive constituents of ginseng. 2',7'-Dichlorofluorescein diacetate (DCF-DA) assay and malondialdehyde (MDA) content were measured for evaluating intracellular reactive oxygen species (ROS) generation. Also, mRNA expressions and activities of antioxidant enzymes were analyzed to determine the antioxidant activity of saponin or non-saponin fractions of ginsengs. According to DCF-DA assay, $H_2O_2$-induced MDA release and ROS generation were significantly reduced by treatment with saponin fractions of white and red ginseng roots. Also, saponin fractions increased effectively intracellular antioxidant enzyme activities including catalase, glutathione peroxidase and superoxide dismutase in $H_2O_2$-treated HepG2 hepatoma cells. In general, red ginseng was more effective than white ginseng for reducing oxidative stress. These results indicate that administration of red ginseng may certainly contribute relatively stronger than white ginseng to prevent from damaging liver function by oxidative stress.