Browse > Article
http://dx.doi.org/10.4062/biomolther.2015.130

Inhibition of Store-Operated Calcium Entry Protects Endothelial Progenitor Cells from H2O2-Induced Apoptosis  

Wang, Yan-Wei (Institute of Cardiovascular Diseases of PLA, Xinqiao Hospital, Third Military Medical University)
Zhang, Ji-Hang (Institute of Cardiovascular Diseases of PLA, Xinqiao Hospital, Third Military Medical University)
Yu, Yang (Institute of Cardiovascular Diseases of PLA, Xinqiao Hospital, Third Military Medical University)
Yu, Jie (Institute of Cardiovascular Diseases of PLA, Xinqiao Hospital, Third Military Medical University)
Huang, Lan (Institute of Cardiovascular Diseases of PLA, Xinqiao Hospital, Third Military Medical University)
Publication Information
Biomolecules & Therapeutics / v.24, no.4, 2016 , pp. 371-379 More about this Journal
Abstract
Store-operated calcium entry (SOCE), a major mode of extracellular calcium entry, plays roles in a variety of cell activities. Accumulating evidence indicates that the intracellular calcium ion concentration and calcium signaling are critical for the responses induced by oxidative stress. The present study was designed to investigate the potential effect of SOCE inhibition on $H_2O_2$-induced apoptosis in endothelial progenitor cells (EPCs), which are the predominant cells involved in endothelial repair. The results showed that $H_2O_2$-induced EPC apoptosis was reversed by SOCE inhibition induced either using the SOCE antagonist ML-9 or via silencing of stromal interaction molecule 1 (STIM1), a component of SOCE. Furthermore, SOCE inhibition repressed the increases in intracellular reactive oxygen species (ROS) levels and endoplasmic reticulum (ER) stress and ameliorated the mitochondrial dysfunction caused by $H_2O_2$. Our findings provide evidence that SOCE inhibition exerts a protective effect on EPCs in response to oxidative stress induced by $H_2O_2$ and may serve as a potential therapeutic strategy against vascular endothelial injury.
Keywords
Endothelial progenitor cells; Oxidative stress; SOCE; STIM 1; ML-9;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Hikita, H., Kodama, T., Tanaka, S., Saito, Y., Nozaki, Y., Nakabori, T., Shimizu, S., Hayashi, Y., Li, W., Shigekawa, M., Sakamori, R., Miyagi, T., Hiramatsu, N., Tatsumi, T. and Takehara, T. (2015) Activation of the mitochondrial apoptotic pathway produces reactive oxygen species and oxidative damage in hepatocytes that contribute to liver tumorigenesis. Cancer Prev. Res. (Phila.) 8, 693-701.   DOI
2 Hooper, R., Samakai, E., Kedra, J. and Soboloff, J. (2013) Multifaceted roles of STIM proteins. Pflugers Arch. 465, 1383-1396.   DOI
3 Hou, G., Xue, L., Lu, Z., Fan, T., Tian, F. and Xue, Y. (2007) An activated mTOR/p70S6K signaling pathway in esophageal squamous cell carcinoma cell lines and inhibition of the pathway by rapamycin and siRNA against mTOR. Cancer Lett. 253, 236-248.   DOI
4 Hung, Y. C., Sava, V. M., Blagodarsky, V. A., Hong, M. Y. and Huang, G. S. (2003) Protection of tea melanin on hydrazine-induced liver injury. Life Sci. 72, 1061-1071.   DOI
5 Jia, S. J., Jiang, D. J., Hu, C. P., Zhang, X. H., Deng, H. W. and Li, Y. J. (2006) Lysophosphatidylcholine-induced elevation of asymmetric dimethylarginine level by the NADPH oxidase pathway in endothelial cells. Vascul. Pharmacol. 44, 143-148.   DOI
6 Kuang, C. Y., Yu, Y., Wang, K., Qian, D. H., Den, M. Y. and Huang, L. (2012) Knockdown of transient receptor potential canonical-1 reduces the proliferation and migration of endothelial progenitor cells. Stem Cells Dev. 21, 487-496.   DOI
7 Lewis, R. S. (2007) The molecular choreography of a store-operated calcium channel. Nature 446, 284-287.   DOI
8 Li, B., Xiao, L., Wang, Z. Y. and Zheng, P. S. (2014) Knockdown of STIM1 inhibits 6-hydroxydopamine-induced oxidative stress through attenuating calcium-dependent ER stress and mitochondrial dysfunction in undifferentiated PC12 cells. Free Radic. Res. 48, 758-768.   DOI
9 Li, H., Wang, L., Ye, L., Mao, Y., Xie, X., Xia, C., Chen, J., Lu, Z. and Song, J. (2009) Influence of Pseudomonas aeruginosa quorum sensing signal molecule N-(3-oxododecanoyl) homoserine lactone on mast cells. Med. Microbiol. Immunol. 198, 113-121.   DOI
10 Li, X., Chen, W., Zhang, L., Liu, W. B. and Fei, Z. (2013) Inhibition of store-operated calcium entry attenuates MPP(+)-induced oxidative stress via preservation of mitochondrial function in PC12 cells: involvement of Homer1a. PLoS ONE 8, e83638.   DOI
11 Liou, J., Kim, M. L., Heo, W. D., Jones, J. T., Myers, J. W., Ferrell, J. E., Jr. and Meyer, T. (2005) STIM is a $Ca^{2+}$ sensor essential for $Ca^{2+}$-store-depletion-triggered $Ca^{2+}$ influx. Curr. Biol. 15, 1235-1241.   DOI
12 Martin-Romero, F. J., Ortiz-de-Galisteo, J. R., Lara-Laranjeira, J., Dominguez-Arroyo, J. A., Gonzalez-Carrera, E. and Alvarez, I. S. (2008) Store-operated calcium entry in human oocytes and sensitivity to oxidative stress. Biol. Reprod. 78, 307-315.   DOI
13 Ohyama, T., Sato, K., Kishimoto, K., Yamazaki, Y., Horiguchi, N., Ichikawa, T., Kakizaki, S., Takagi, H., Izumi, T. and Mori, M. (2012) Azelnidipine is a calcium blocker that attenuates liver fibrosis and may increase antioxidant defence. Br. J. Pharmacol. 165, 1173-1187.   DOI
14 Pieper, G. M. and Dondlinger, L. A. (1998) Antioxidant pyrrolidine dithiocarbamate prevents defective bradykinin-stimulated calcium accumulation and nitric oxide activity following exposure of endothelial cells to elevated glucose concentration. Diabetologia 41, 806-812.   DOI
15 Rasheva, V. I. and Domingos, P. M. (2009) Cellular responses to endoplasmic reticulum stress and apoptosis. Apoptosis 14, 996-1007.   DOI
16 Pizzo, P. and Pozzan, T. (2007) Mitochondria-endoplasmic reticulum choreography: structure and signaling dynamics. Trends Cell Biol. 17, 511-517.   DOI
17 Plomaritas, D. R., Herbert, L. M., Yellowhair, T. R., Resta, T. C., Gonzalez Bosc, L. V., Walker, B. R. and Jernigan, N. L. (2014) Chronic hypoxia limits $H_2O_2$-induced inhibition of ASIC1-dependent storeoperated calcium entry in pulmonary arterial smooth muscle. Am. J. Physiol. Lung Cell Mol. Physiol. 307, L419-L430.   DOI
18 Rao, W., Zhang, L., Su, N., Wang, K., Hui, H., Wang, L., Chen, T., Luo, P., Yang, Y. F., Liu, Z. B. and Fei, Z. (2013) Blockade of SOCE protects HT22 cells from hydrogen peroxide-induced apoptosis. Biochem. Biophys. Res. Commun. 441, 351-356.   DOI
19 Rebecchi, M. J. and Pentyala, S. N. (2000) Structure, function, and control of phosphoinositide-specific phospholipase C. Physiol. Rev. 80, 1291-1335.   DOI
20 Roos, J., DiGregorio, P. J., Yeromin, A. V., Ohlsen, K., Lioudyno, M., Zhang, S., Safrina, O., Kozak, J. A., Wagner, S. L., Cahalan, M. D., Veliçelebi, G. and Stauderman, K. A. (2005) STIM1, an essential and conserved component of store-operated $Ca^{2+}$ channel function. J. Cell Biol. 169, 435-445.   DOI
21 Schleicher, E. and Friess, U. (2007) Oxidative stress, AGE, and atherosclerosis. Kidney Int. Suppl. 72, S17-S26.   DOI
22 Su, J. Y., Duffy, S. and Murphy, T. H. (1999) Reduction of $H_2O_2$-evoked, intracellular calcium increases in the rat N18-RE-105 neuronal cell line by pretreatment with an electrophilic antioxidant inducer. Neurosci. Lett. 273, 109-112.   DOI
23 Urbich, C., Knau, A., Fichtlscherer, S., Walter, D. H., Bruhl, T., Potente, M., Hofmann, W. K., de Vos, S., Zeiher, A. M. and Dimmeler, S. (2005) FOXO-dependent expression of the proapoptotic protein Bim: pivotal role for apoptosis signaling in endothelial progenitor cells. FASEB J. 19, 974-976.   DOI
24 Thum, T., Fraccarollo, D., Galuppo, P., Tsikas, D., Frantz, S., Ertl, G. and Bauersachs, J. (2006) Bone marrow molecular alterations after myocardial infarction: Impact on endothelial progenitor cells. Cardiovasc. Res. 70, 50-60.   DOI
25 Thum, T., Fraccarollo, D., Schultheiss, M., Froese, S., Galuppo, P., Widder, J. D., Tsikas, D., Ertl, G. and Bauersachs, J. (2007) Endothelial nitric oxide synthase uncoupling impairs endothelial progenitor cell mobilization and function in diabetes. Diabetes 56, 666-674.   DOI
26 Tornquist, K., Vainio, P. J., Bjorklund, S., Titievsky, A., Dugue, B. and Tuominen, R. K. (2000) Hydrogen peroxide attenuates store-operated calcium entry and enhances calcium extrusion in thyroid FRTL-5 cells. Biochem. J. 351, 47-56.   DOI
27 Wang, S. and El-Deiry, W. S. (2004) Cytochrome c: a crosslink between the mitochondria and the endoplasmic reticulum in calciumdependent apoptosis. Cancer Biol. Ther. 3, 44-46.   DOI
28 Watson, T., Goon, P. K. and Lip, G. Y. (2008) Endothelial progenitor cells, endothelial dysfunction, inflammation, and oxidative stress in hypertension. Antioxid. Redox Signal. 10, 1079-1088.   DOI
29 Yoshii, T., Iwai, M., Li, Z., Chen, R., Ide, A., Fukunaga, S., Oshita, A., Mogi, M., Higaki, J. and Horiuchi, M. (2006) Regression of atherosclerosis by amlodipine via anti-inflammatory and anti-oxidative stress actions. Hypertens. Res. 29, 457-466.   DOI
30 Zhang, H. Y. and Sun, H. (2010) Up-regulation of Foxp3 inhibits cell proliferation, migration and invasion in epithelial ovarian cancer. Cancer Lett. 287, 91-97.   DOI
31 Zhao, X., Huang, L., Yin, Y., Fang, Y., Zhao, J. and Chen, J. (2008) Estrogen induces endothelial progenitor cells proliferation and migration by estrogen receptors and PI3K-dependent pathways. Microvasc. Res. 75, 45-52.   DOI
32 Caron, A. Z., Chaloux, B., Arguin, G. and Guillemette, G. (2007) Protein kinase C decreases the apparent affinity of the inositol 1,4,5-trisphosphate receptor type 3 in RINm5F cells. Cell calcium 42, 323-331.   DOI
33 Arnaudeau, S., Kelley, W. L., Walsh, J. V., Jr. and Demaurex, N. (2001) Mitochondria recycle $Ca^{2+}$ to the endoplasmic reticulum and prevent the depletion of neighboring endoplasmic reticulum regions. J. Biol. Chem. 276, 29430-29439.   DOI
34 Battelli, M. G., Polito, L. and Bolognesi, A. (2014) Xanthine oxidoreductase in atherosclerosis pathogenesis: not only oxidative stress. Atherosclerosis 237, 562-567.   DOI
35 Cachofeiro, V., Goicochea, M., de Vinuesa, S. G., Oubina, P., Lahera, V. and Luno, J. (2008) Oxidative stress and inflammation, a link between chronic kidney disease and cardiovascular disease. Kidney Int. Suppl. S4-S9.
36 Deniaud, A., Sharaf el dein, O., Maillier, E., Poncet, D., Kroemer, G., Lemaire, C. and Brenner, C. (2008) Endoplasmic reticulum stress induces calcium-dependent permeability transition, mitochondrial outer membrane permeabilization and apoptosis. Oncogene 27, 285-299.   DOI
37 Harrison, D., Griendling, K. K., Landmesser, U., Hornig, B. and Drexler, H. (2003) Role of oxidative stress in atherosclerosis. Am. J. Cardiol. 91, 7A-11A.   DOI
38 Godfraind, T. (2005) Antioxidant effects and the therapeutic mode of action of calcium channel blockers in hypertension and atherosclerosis. Philos. Trans. R. Soc. Lond B, Biol. Sci. 360, 2259-2272.   DOI
39 Griendling, K. K. and FitzGerald, G. A. (2003) Oxidative stress and cardiovascular injury: Part II: animal and human studies. Circulation 108, 2034-2040.   DOI
40 Hammadi, M., Oulidi, A., Gackiere, F., Katsogiannou, M., Slomianny, C., Roudbaraki, M., Dewailly, E., Delcourt, P., Lepage, G., Lotteau, S., Ducreux, S., Prevarskaya, N. and Van Coppenolle, F. (2013) Modulation of ER stress and apoptosis by endoplasmic reticulum calcium leak via translocon during unfolded protein response: involvement of GRP78. FASEB J. 27, 1600-1609.   DOI
41 Heitzer, T., Schlinzig, T., Krohn, K., Meinertz, T. and Munzel, T. (2001) Endothelial dysfunction, oxidative stress, and risk of cardiovascular events in patients with coronary artery disease. Circulation 104, 2673-2678.   DOI
42 Henke, N., Albrecht, P., Bouchachia, I., Ryazantseva, M., Knoll, K., Lewerenz, J., Kaznacheyeva, E., Maher, P. and Methner, A. (2013) The plasma membrane channel ORAI1 mediates detrimental calcium influx caused by endogenous oxidative stress. Cell Death Dis. 4, e470.   DOI
43 Henke, N., Albrecht, P., Pfeiffer, A., Toutzaris, D., Zanger, K. and Methner, A. (2012) Stromal interaction molecule 1 (STIM1) is involved in the regulation of mitochondrial shape and bioenergetics and plays a role in oxidative stress. J. Biol. Chem. 287, 42042-42052.   DOI