Probiotics are traditionally defined as viable microorganisms that have a beneficial effect in the prevention and treatment of pathologic conditions when they are ingested. Although there is a relatively large volume of literature that supports the use of probiotics to prevent or treat intestinal disorders, the scientific basis behind probiotic use has only recently been established, and clinical studies on this topic are just beginning to get published. Currently, the best studied probiotics are lactic acid bacteria, particularly Lactobacillus and Bifidobacterium species. Other organisms used as probiotics in humans include Escherichia coli, Streptococcus sp., Enterococcus sp., Bacteroides sp., Bacillus sp., Propionibacterium sp., and various fungi, and some probiotic preparations contain more than one bacterial strain. Probiotic use for the prevention and treatment of antibiotic-associated diarrhea caused by Clostridium difficile induced intestinal disease as well as for other gastrointestinal disorders has been discussed in this review.
Lactic acid-producing bacteria such as Lactobacillus spp. function to ferment carbohydrates and produce ATP. Such Lactobacillus spp. are used for the production of commercial yogurts. Lactobacillus spp. are beneficial to the intestinal tract, and Lactobacillus acidophilus-containing yogurts have received considerable attention because of their preventive effects against early-stage cancer of the large intestine. In this study, lactic acid-producing bacteria were cultured from three different groups: commercial solid yogurt (for eating), commercial liquid yogurt (for drinking), and Lactobacillus acidophilus-containing yogurt. We first determined the optimum culture conditions for Lactobacillus spp. and then analyzed turbidity and pH in order to compare the growth abilities and lactic acid-production capacities among the groups. Finally, high-performance liquid chromatography was used to measure the lactic acid content in the culture supernatants, and the antibacterial activities against Staphylococcus aureus and Escherichia coli were compared among the three groups. The optimum culture conditions for Lactobacillus spp. were MRS medium at $25^{\circ}C$, for 24 h. The highest turbidity was found in L. acidophilus-containing yogurt, followed by liquid yogurt and solid yogurt. Similarly, the highest lactic acid production ability was found in L. acidophilus-containing yogurt, followed by liquid yogurt and solid yogurt. Culture supernatants from the three groups did not show any antibacterial activity towards S. aureus; however, supernatants derived from L. acidophilus-containing yogurt resulted in a 1.8 mm inhibitory zone against E. coli in a paper disk diffusion test. These results revealed the high level of lactic acid-production capacity and antibacterial activity in L. acidophilus-containing yogurt.
Giannenas, I.;Papaneophytou, C.P.;Tsalie, E.;Pappas, I.;Triantafillou, E.;Tontis, D.;Kontopidis, G.A.
Asian-Australasian Journal of Animal Sciences
/
v.27
no.2
/
pp.225-236
/
2014
Three trials were conducted to evaluate the effect of supplementation of a basal diet with benzoic acid or thymol or a mixture of essential oil blends (MEO) or a combination of benzoic acid with MEO (BMEO) on growth performance of turkey poults. Control groups were fed a basal diet. In trial 1, benzoic acid was supplied at levels of 300 and 1,000 mg/kg. In trial 2, thymol or the MEO were supplied at levels of 30 mg/kg. In trial 3, the combination of benzoic acid with MEO was evaluated. Benzoic acid, MEO and BMEO improved performance, increased lactic acid bacteria populations and decreased coliform bacteria in the caeca. Thymol, MEO and BMEO improved antioxidant status of turkeys. Benzoic acid and BMEO reduced the buffering capacity compared to control feed and the pH values of the caecal content. Benzoic acid and EOs may be suggested as an effective alternative to AGP in turkeys.
We investigated the effects of single and combined administrations of Lactobacillus species (L. plantarum, LP; L. gasseri, LG; L. casei, LC) on blood lipid metabolism and obesity in mice fed a high-fat diet (HFD). The mice were continuously supplemented with LP, LP/LG, or LP/LG/LC, along with HFD, for 12 weeks. The consumption of HFD led to significant increases in body weight, total cholesterol, and triglyceride levels compared to the normal control group. However, administration of LP, LP/LG, or LP/LG/LC to HFD-fed mice reduced body weight gain and showed a tendency to suppress the levels of total cholesterol, triglycerides, and LDL-cholesterol, while increasing HDL-cholesterol levels. The HFD group exhibited increased abdominal fat weight and larger adipocytes in the epididymal adipose tissue compared to the NC group. However, the administered probiotics led to a significant reduction in adipocyte size with decreasing tendency in abdominal fat weight compared with the HFD group. Additionally, the deposition of giant vesicular fat cells in the liver of the HFD group considerably decreased in the probiotic-administered group. Microbiome analysis revealed an imbalance in intestinal microbes in the HFD group, characterized by lower Bacteroidetes and higher Proteobacteria ratios. However, probiotic administration tended to restore the microbial distribution by controlling the abundance of Bacteroidetes and Proteobacteria, resulting in decreased Firmicutes/Bacteroidetes and Proteobacteria/Bacteroidetes ratios. These results suggest that single and combined administration of LP and other probiotics holds enormous potential in reducing obesity in HFD-fed mice as they regulate lipid metabolism, reduce adipocyte size, and restore the balance of intestinal microbes.
Probiotics are living microorganisms that, when administered in adequate amounts, provide a health benefit to the host and are considered safe. Most probiotic strains that are beneficial to human health are included in the "Lactic acid bacteria" (LAB) group. The positive effects of probiotic bacteria on the host's health are species-specific and even strain-specific. Therefore, evaluating the probiotic potential of both wild and novel strains is essential. In this study, the probiotic characteristics of Lactobacillus brevis KT38-3 were determined. The strain identification was achieved by 16S rRNA sequencing. API-ZYM test kits were used to determine the enzymatic capacity of the strain. L. brevis KT38-3 was able to survive in conditions with a broad pH range (pH 2-7), range of bile salts (0.3%-1%) and conditions that simulated gastric juice and intestinal juice. The percentage of autoaggregation (59.4%), coaggregation with E. coli O157:H7 (37.4%) and hydrophobicity were determined to be 51.1%, 47.4%, and 52.7%, respectively. L. brevis KT38-3 produced β-galactosidase enzymes and was able ferment lactose. In addition, this strain was capable of producing antimicrobial peptides against the bacteria tested, including methicillin and/or vancomycin-resistant bacteria. The cell-free supernatants of the strain had high antioxidant activities (DPPH: 54.9% and ABTS: 48.7%). Therefore, considering these many essential in vitro probiotic properties, L. brevis KT38-3 has the potential to be used as a probiotic supplement. Supporting these findings with in vivo experiments to evaluate the potential health benefits will be the subject of our future work.
Journal of the Korean Society of Food Science and Nutrition
/
v.42
no.3
/
pp.348-354
/
2013
To investigate the effect of tagatose on the growth of intestinal bacteria, various species were cultivated individually on m-PYF medium containing tagatose as a carbon source. The tagatose inhibited the growth of intestinal harmful microorganisms such as Staphylococcus aureus subsp. aureus, Listeria monocytogenes, Vibrio parahaemolyticus, Salmonella Typhimurium, and Pseudomonas fluorescens. In the case of beneficial microorganisms found in the intestine, Lactobacillus casei grew effectively on m-PYF medium containing tagatose, while Lactobacillus plantarum, Lactobacillus brevis, Leuconostoc citreum, and Lactobacillus acidophilus did not. To examine the effect of tagatose on fermentation by Lactobacillus casei, yogurt was prepared with tagatose as a carbon source. The resulting acid production stimulated a remarkable growth of lactic acid bacteria in the yogurt. After fermentation for 24 hours, the viable cell count and viscosity of yogurt were above 8.49 log CFU/mL and 1,266 cps, respectively. Moreover, sensory evaluations showed that the yogurt supplemented with tagatose was as acceptable as control yogurt prepared with glucose as a carbon source. The changes in pH, titratable acidity and lactic acid bacteria in yogurt prepared with tagatose did not show any significant changes during storage for 15 days at $4^{\circ}C$.
The aim of this study was to evaluated the efficacy of mixture of Lactic Acid Bacteria (LAB) and bifidobacteria supplement, which are contained with Lactobacillus acidophilus, Bifidobacterium longum SPM1205, and Pediococcus pentosaceus for the management of constipation in animal model and clinical trials. 5 ICR mice and 4 female constipation subjects were orally taken mixture of LAB and bifidobacteria for 2 weeks. We investigated the number of fecal LAB and harmful enzymes activities before and after mixture of LAB and bifidobacteria application. As a result, fecal LAB count was increased and harmful enzymes activities of intestinal microflora were generally decreased after mixture of LAB and bifidobacteria application. Also, 61 female subjects were randomly assigned to receive either mixture of LAB and bifidobacteria or lactose and were taken three times a day for 2 weeks. Then, we analyzed mixture of LAB and bifidobacteria effect through the questionnaires. Daily consumption of this mixture of LAB and bifidobacteria improved the constipation in constipation group (56.3%) compared with lactose application group (26.7%). Furthermore, after mixture of LAB and bifidobacteria treatment, frequency of hard stool decreased from 0.22 to 0.03. These results indicated that mixture of LAB and bifidobacteria application is effective to improve the constipation.
An, Su Jin;Kim, Jae Yeong;Choi, In Soon;Cho, Kwang Keun
Journal of Life Science
/
v.23
no.10
/
pp.1295-1303
/
2013
According to facts revealed up until the present, there are a total of 68 known phyla on earth, including 55 phyla of bacteria and 13 phyla of archaea. The human large intestine has 9 phyla of microorganisms, which is a relatively lower diversity compared to the general environments of soil or sea. The diversity of intestinal microorganisms is affected by the characteristics of the host (genetic background, sex, age, immune system, and gut motility), the diet (non-digestible carbohydrates, fat, prebiotics, probiotics), and the intake of antibiotics, which in turn have an effect on energy storage processes, gene expressions, and even metabolic diseases like obesity. Probiotics are referred to as living microorganisms that improve the intestinal microbiota and contribute to the health of the host; in addition, probiotics usually comprise lactic acid bacteria. Recently, bacteriotherapy using probiotics has been utilized to treat sicknesses like diarrhea and irritable bowel syndrome. Prebiotics are a food ingredient which can selectively adjust intestinal microorganisms and which comprise inulin, fructooligosaccharides, galactooligosaccharides, and lactulose. In recent days, attention has been paid to the use of dietary cellulose in the large intestine and the production of short chain fatty acids (short-chain fatty acids) in relation to obesity and anticancer. More research into microorganisms in the large intestine is necessary to identify specific microorganism species, which are adjusted by diverse non-digestible carbohydrates, prebiotics, and probiotics in the large intestine and to understand the connection between sicknesses and metabolites like short chain fatty acids produced by these microorganism species.
Yu, Da Yoon;Kim, Jeong A;Kim, In Sung;Lee, Chul Young;Kim, Seong chan;Lee, Sang Suk;Choi, In Soon;Cho, Kwang Keun
Journal of Life Science
/
v.27
no.12
/
pp.1421-1429
/
2017
The present study was undertaken to investigate the effects of dietary provision of lactic acid bacteria (LB) and sea tangle (ST) on the obesity-associated intestinal microbiota in rats with obesity induced by a high-fat diet. Forty-eight 8-wk-old Sprague-Dawley rats were fed a basal diet (CON), a high fat diet (HFD; CON supplemented with 10% lard), HF supplemented with LB [HFL; $5{\times}10^8cfu$ of each of Lactobacillus rhamnosus, Lactobacillus johnsonii, Bifidobacterium longum and Bifidobacterium lactis], or HFL containing 10% ST (HFLS), with 4 replicates (cages) of 3 rats per dietary treatment, for 6 wk, and the intestinal microbiota were determined by pyrosequencing. The HFL and HFLS groups exhibited reduced rates of weight gain than the HF group, and the former groups had smaller ratios of Firmicutes and greater ratios of Bacteriodetes, with decreased Firmicutes/Bacteroidetes ratios, than the latter at the level of the phylum. Compared with the results for the HF group, HFL and HFLS had reduced ratios of the families of Roseburia, Mollicute, Erysipelotrichi, and Oscillibacter within Firmicutes associated with obesity and increased ratios of the families of Prevotella, Alistipes and Bacteroides within the Bacterioidetes phylum known to have an anti-obesity effect. The content of butyric acid in feces was greater in the HFLS group vs. HF and HFL. In conclusion, the present results suggest that dietary provision of LB plus ST has an anti-obesity effect and induced changes in intestinal microorganisms, and enhanced the content of butyric acid, which is an intestinal metabolite.
Kim, Young-Hoon;Kim, Sae-Hun;Whang, Kwang-Youn;Kim, Young-Jun;Oh, Se-Jong
Journal of Microbiology and Biotechnology
/
v.18
no.7
/
pp.1278-1285
/
2008
The intestinal epithelial cell (IEC) layer of the intestinal tract makes direct contact with a number of microbiota communities, including bacteria known to have deleterious health effects. IECs possess innate protective strategies against pathogenic challenge, which primarily involve the formation of a physicochemical barrier. Intestinal tract mucins are principal components of the mucus layer on epithelial surfaces, and perform a protective function against microbial damage. However, little is currently known regarding the interactions between probiotics/pathogens and epithelial cell mucins. The principal objective of this study was to determine the effects of Lactobacillus on the upregulation of MUC2 mucin and the subsequent inhibition of E. coli O157:H7 attachment to epithelial cells. In the current study, the attachment of E. coli O157:H7 to HT-29 intestinal epithelial cells was inhibited significantly by L. acidophilus A4 and its cell extracts. It is also important to note that the expression of MUC2 mucin was increased as the result of the addition of L. acidophilus A4 cell extracts (10.0 mg/ml), which also induced a significant reduction in the degree to which E. coli O157:H7 attached to epithelial cells. In addition, the mRNA levels of IL-8, IL-1$\beta$, and TNF-$\alpha$ in HT-29 cells were significantly induced by treatment with L. acidophilus A4 extracts. These results indicate that MUC2 mucin and cytokines are important regulatory factors in the immune systems of the gut, and that selected lactobacilli may be able to induce the upregulation of MUC2 mucin and specific cytokines, thereby inhibiting the attachment of E. coli O157:H7.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.