Browse > Article
http://dx.doi.org/10.5352/JLS.2017.27.12.1421

Effects of Mixture Lactic Acid Bacteria and Sea Tangle on Anti-obesity and Gut Microflora in Rats  

Yu, Da Yoon (Department of Animal Resources Technology, Gyeongnam National University of Science and Technology)
Kim, Jeong A (Department of Animal Resources Technology, Gyeongnam National University of Science and Technology)
Kim, In Sung (Department of Animal Resources Technology, Gyeongnam National University of Science and Technology)
Lee, Chul Young (Department of Animal Resources Technology, Gyeongnam National University of Science and Technology)
Kim, Seong chan (Colleges of Medicine, Hallym University)
Lee, Sang Suk (Department of Animal Science and Technology, Sunchon National University)
Choi, In Soon (Department of Life Science, Silla University)
Cho, Kwang Keun (Department of Animal Resources Technology, Gyeongnam National University of Science and Technology)
Publication Information
Journal of Life Science / v.27, no.12, 2017 , pp. 1421-1429 More about this Journal
Abstract
The present study was undertaken to investigate the effects of dietary provision of lactic acid bacteria (LB) and sea tangle (ST) on the obesity-associated intestinal microbiota in rats with obesity induced by a high-fat diet. Forty-eight 8-wk-old Sprague-Dawley rats were fed a basal diet (CON), a high fat diet (HFD; CON supplemented with 10% lard), HF supplemented with LB [HFL; $5{\times}10^8cfu$ of each of Lactobacillus rhamnosus, Lactobacillus johnsonii, Bifidobacterium longum and Bifidobacterium lactis], or HFL containing 10% ST (HFLS), with 4 replicates (cages) of 3 rats per dietary treatment, for 6 wk, and the intestinal microbiota were determined by pyrosequencing. The HFL and HFLS groups exhibited reduced rates of weight gain than the HF group, and the former groups had smaller ratios of Firmicutes and greater ratios of Bacteriodetes, with decreased Firmicutes/Bacteroidetes ratios, than the latter at the level of the phylum. Compared with the results for the HF group, HFL and HFLS had reduced ratios of the families of Roseburia, Mollicute, Erysipelotrichi, and Oscillibacter within Firmicutes associated with obesity and increased ratios of the families of Prevotella, Alistipes and Bacteroides within the Bacterioidetes phylum known to have an anti-obesity effect. The content of butyric acid in feces was greater in the HFLS group vs. HF and HFL. In conclusion, the present results suggest that dietary provision of LB plus ST has an anti-obesity effect and induced changes in intestinal microorganisms, and enhanced the content of butyric acid, which is an intestinal metabolite.
Keywords
Antiobesity; mixture lactic acid bacteria; gut microbiota; rat; sea tangle;
Citations & Related Records
Times Cited By KSCI : 7  (Citation Analysis)
연도 인용수 순위
1 Elinav, E., Strowig, T., Kau, A. L., Henao-Mejia, J., Thaiss, C. A., Booth, C. J., Peaper, D. R., Bertin, J., Eisenbarth, S. C., Gordon, J. I. and Flavell, R. A. 2011. NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell 145, 745-757.   DOI
2 Falony, G., Verschaeren, A., De Bruycker, F., De Preter, V., Verbeke, K., Leroy, F. and De Vuyst, L. 2009. In vitro kinetics of prebiotic inulin-type fructan fermentation by butyrate-producing colon bacteria: implementation of online gas chromatography for quantitative analysis of carbon dioxide and hydrogen gas production. Appl. Environ. Microbiol. 75, 5884-5892.   DOI
3 Filippo, C. D., Cavalieri, D., Paola, M. D., Ramazzotti, M., Poullet, J. B., Massart, S., Collini, S., Pieraccini, G. and Lionetti, P. 2010. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc. Natl. Acad. Sci. USA 33, 14691-1496.
4 Grundy, S. M. 1988. Multifactorial causation of obesity: implications for prevention. J. Clin. Nutr. 67, 563S-72S.
5 Hadwiger, L. A., Fristensky, B. and Riggleman, R. C. 1984. Chitosan, a natural regulator in plant-fungal pathogen interactions, increases crop yield. In: "Chitin, chitosan and related enzymes" (ed. Zikakis, J.P.) Academic Press Inc. Orlando, pp 291-298.
6 Hakkak, R., Korourian, S., Foley, S. L. and Erickson, B. D. 2017. Assessment of gut microbiota populations in lean and obese Zucker rats. PLoS One 12, e0181451.   DOI
7 Parveen, B., Pillai, K. K., Tamboli, E. T. and Ahmad, S. 2015. Effect of piperine on pharmacokinetics of sodium valproate in plasma samples of rats using gas chromatography-mass spectrometry method. J. Pharm. Bioallied Sci. 7, 317-320.   DOI
8 Pellegrini, S., Sordi, V., Bolla, A. M., Saita, D., Ferrarese, R., Canducci, F., Clementi, M., Invernizzi, F., Mariani, A., Bonfanti, R., Barera, G., Testoni, P. A., Doglioni, C., Bosi, E. and Piemonti, L. 2017. Duodenal mucosa of patients with type 1 diabetes shows distinctive inflammatory profile and microbiota. J. Clin. Endocrinol. Metab. 102, 1468-1477.   DOI
9 Qu, W., Yuan, X., Zhao, J., Zhang, Y., Hu, J., Wang, J. and Li, J. 2017. Dietary advanced glycation end products modify gut microbial composition and partially increase colon permeability in rats. Mol. Nutr. Food Res. 61, doi: 10.1002/mnfr. 201700118.   DOI
10 Reilly, P., O'Doherty, J. V., Pierce, K. M., Callan, J. J., O'Sullivan, J. T. and Sweeney, T. 2008. The effects of seaweed extract inclusion on gut morphology, selected intestinal microbiota, nutrient digestibility, volatile fatty acid concentrations and the immune status of the weaned pig. Animal 2, 1465-1473.
11 Robles-Vera, I., Toral, M., Romero, M., Jimenez, R., Sanchez, M., Perez-Vizcaino, F. and Duarte, J. 2017. Antihypertensive effects of probiotics. Curr. Hypertens. Rep. 19, 26.   DOI
12 Ishiguro, T. 1984. Gas chromatographic studies on propionic acid, butyric acid and valeric acid in culture fluid of Trichomonas vaginalis. Nihon Sanka Fujinka Gakkai Zasshi 36, 363-8.
13 Hedemann, M. S., Theil, P. K. and Bach Knudsen, K. E. 2009. The thickness of the intestinal mucous layer in the colon of rats fed various sources of non-digestible carbohydrates is positively correlated with the pool of SCFA but negatively correlated with the proportion of butyric acid in digesta. Br. J. Nutr. 102, 117-25.   DOI
14 Scher, J. U., Sczesnak, A., Longman, R. S., Segata, N., Ubeda, C., Bielski, C., Rostron, T., Cerundolo, V., Pamer, E. G., Abramson, S. B., Huttenhower, C. and Littman, D. R. 2013. Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis. Elife 2, e01202.
15 Settanni, L. and Corsetti, A. 2008. Application of bacteriocins in vegetable food biopreservation. Int. J. Food Microbiol. 121, 123-138.   DOI
16 Henning, S. M., Yang, J., Shao, P., Lee, R. P., Huang, J., Ly, A., Hsu, M., Lu, Q. Y., Thames, G., Heber, D. and Li, Z. 2017. Health benefit of vegetable/fruit juice-based diet: Role of microbiome. Sci. Rep. 7, 2167.   DOI
17 Horie, M., Miura, T., Hirakata, S., Hosoyama, A., Sugino, S., Umeno, A., Murotomi, K., Yoshida, Y. and Koike, T. 2017. Comparative analysis of the intestinal flora in type 2 diabetes and nondiabetic mice. Exp. Anim. 10, 1538.
18 Hur, K. Y. and Lee, M. S. 2015. Gut microbiota and metabolic disorders. Diabetes Metab. J. 39, 198-203.   DOI
19 Hwang, Y. J., Chae, I. S. and Lee, Y. K. 2017. Anti-inflammatory effects of fermented Laminaria japonica and Hizikia fusiforme water extracts with probiotics in LPS-stimulated RAW264.7 macrophage cell line. J. East Asian. Soc. Diet Life 27, 1-8.   DOI
20 Isolauri, E., Salminen, S. and Ouwehand, A. C. 2004. Microbial-gut interactions in health and disease, Probiotics. Best Pract. Res. Clin. Gastroenterol. 18, 299-313.   DOI
21 Son, H. S., Kim, H. S. and Ju, J. S. 1992. Effect of seaweeds intake on the absorption of sodium, calcium, potassium and hypolipidemic mechanism in healthy male subjects. J. Kor. Soc. Food Sci. Nutr. 21, 471-477.
22 Shida, K., Makino, K., Morishita, A., Takamizawa, K., Hachimura, S., Ametani, A., Sato, T., Kumagai, Y., Habu, S. and Kaminogawa, S. 1998. Lactobacillus casei inhibits antigen-induced IgE secretion through regulation of cytokine production in murine splenocyte cultures. Int. Arch. Allergy Immunol. 115, 278-287.   DOI
23 Sinh, P., Karimi, A., Devendra, K., Waldroup, P. W., Cho, K. K. and Kwon, Y. M. 2013. Influence of penicillin on microbial diversity of the cecal microbiota in broiler chickens. Poult. Sci. 92, 272-276.   DOI
24 Slavin, J. L. 2005. Dietary fiber and body weight. Nutrition 21, 411-418.   DOI
25 Thomas, G. and Fredrik, B. 2011. Effects of the gut microbiota on obesity and glucose homeostasis. Trends. Endocrinol. Metab. 22, 117-123.   DOI
26 Turnbaugh, P. J., Backhed, F., Fulton, L. and Gordon, J. I. 2008. Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe 3, 213-223.   DOI
27 Jang, W. S. and Choung, S. Y. 2013. Antiobesity effects of the ethanol extract of Laminaria japonica Areshoung in high-fat-diet-induced obese rat. Evid. Based. Complement. Alternat. Med. 2013, 17.
28 Jun, H. S., Choi, Y. K., Won, Y. S., Hun, B. H. and Kim, J. W. 1999. Effects of lactic acid bacteria on infection of Salmonella typhimurium in mouse. J. Kor. Dairy Sci. 21, 171-182.
29 Kang, C., Wang, B., Kaliannan, K., Wang, X., Lang, H., Hui, S., Huang, L., Zhang, Y., Zhou, M., Chen, M. and Mi, M. 2017. Gut microbiota mediates the protective effects of dietary capsaicin against chronic low-grade inflammation and associated obesity induced by high-fat diet. mBio. 8, e00470-17.
30 Tunapong, W., Apaijai, N., Yasom, S., Tanajak, P., Wanchai, K., Chunchai, T., Kerdphoo, S., Eaimworawuthikul, S., Thiennimitr, P., Pongchaidecha, A., Lungkaphin, A., Pratchayasakul, W., Chattipakorn, S. C. and Chattipakorn, N. 2017. Chronic treatment with prebiotics, probiotics and synbiotics attenuated cardiac dysfunction by improving cardiac mitochondrial dysfunction in male obese insulin-resistant rats. Eur. J. Nutr. 10, 1-14.
31 Turnbaugh, P. J., Ley, R. E., Klein, S. and Gordon, J. I. 2006. An obesityassociated gut microbiome with increased capacity for energy harvest. Nature 444, 1027-1031.   DOI
32 Branchereau, M., Reichardt, F., Loubieres, P., Marck, P., Waget, A., Azalbert, V., Colom, A., Padmanabhan, R., Iacovoni, J. S., Giry, A., Terce, F., Heymes, C., Burcelin, R., Serino, M. and Blasco-Baque, V. 2016. Periodontal dysbiosis linked to periodontitis is associated with cardiometabolic adaptation to high-fat diet in mice. Am. J. Physiol. Gastrointest. Liver Physiol. 310, G1091-101.   DOI
33 Albu, J., Allison, D., Boozer, C. N., Heymsfield, S., Kissileff, H., Kretser, A., Krumhar, K., Leibel, R., Nonas, C., PiSunyer, X., VanItallie, T. and Wedral, E. 1997. Obesity solutions: report of a meeting. Nutr. Rev. 55, 150-156.
34 Bagarolli, R. A., Tobar, N., Oliveira, A. G., Araujo, T. G., Carvalho, B. M., Rocha, G. Z., Vecina, J. F., Calisto, K., Guadagnini, D., Prada, P. O., Santos, A., Saad, S. T. O. and Saad, M. J. A. 2017. Probiotics modulate gut microbiota and improve insulin sensitivity in DIO mice. J. Nutr. Biochem. 50, 16-25.   DOI
35 Barcenilla, A., Pryde, S. E., Martin, J. C., Duncan, S. H., Stewart, C. S., Henderson, C. and Flint, H. J. 2000. Phylogenetic relationships of butyrate-producing bacteria from the human gut. Appl. Environ. Microbiol. 66, 1654-1661.   DOI
36 Biagi, E., Candela, M., Fairweather-Tait, S., Franceschi, C. and Brigidi, P. 2012. Aging of the human metaorganism: the microbial counterpart. Age. (Dordr) 34, 247-267.   DOI
37 Bobek, P., Ozdiin, L. and Galbavyy, S. 1998. Dose- and timedependent hypocholesterolemic effect of oyster mushroom (Pleurotus ostreatus) in rat. Nutrition 14, 282-286.   DOI
38 Caldeira, D., Martins, C., Alves, L. B., Pereira, H., Ferreira, J. J. and Costa, J. 2013. Caffeine does not increase the risk of atrial fibrillation: a systematic review and meta-analysis of observational studies. Heart 99, 1383-1389.   DOI
39 Kim, B. S., Song, M. Y. and Kim, H. 2014. The anti-obesity effect of Ephedra sinica through modulation of gut microbiota in obese Korean women. J. Ethnopharmacol. 152, 532-539.   DOI
40 Karimi, G., Jamaluddin, R., Mohtarrudin, N., Ahmad, Z., Khazaai, H. and Parvaneh, M. 2017. Single-species versus dual-species probiotic supplementation as an emerging therapeutic strategy for obesity. Nutr. Metab. Cardiovasc. Dis. 10, 910-918.
41 Kim, J. Y., Choi, E. Y., Hong, Y. H., Song, Y. O., Han, J. S., Lee, S. S., Han, E. S., Kim, T. W., Choi, I. S. and Cho, K. K. 2016. Changes in Korean adult females' intestinal microbiota resulting from kimchi intake. JNFS 6, 2-9.
42 Wu, M., Wu, Y., Deng, B., Li, J., Cao, H., Qu, Y., Qian, X. and Zhong, G. 2016. Isoliquiritigenin decreases the incidence of colitis-associated colorectal cancer by modulating the intestinal microbiota. Oncotarget 7, 85318-85331.
43 Udayappan, S., Manneras-Holm, L., Chaplin-Scott, A., Belzer, C., Herrema, H., Dallinga-Thie, G. M., Duncan, S. H., Stroes, E. S. G., Groen, A. K., Flint, H. J., Backhed, F., de Vos, W. M. and Nieuwdorp, M. 2016. Oral treatment with Eubacterium hallii improves insulin sensitivity in db/db mice. NPJ. Biofilms. Microbiomes 2, 16009.   DOI
44 Wang, J. H., Kim, B. S., Han, K. and Kim, H. 2017. Ephedratreated donor-derived gut microbiota transplantation ameliorates high fat diet-induced obesity in rats. Int. J. Environ. Res. Public Health 14, piiE555.   DOI
45 World Health Organization. 1997. Obesity: preventing and managing the global epidemic. Report of a WHO consultation. World Health Organ. Tech. Rep. Ser. 1-254.
46 Wu, Z. X., Li, S. F., Chen, H., Song, J. X., Gao, Y. F., Zhang, F. and Cao, C. F. 2017. The changes of gut microbiota after acute myocardial infarction in rats. PLoS One 12, e0180717.   DOI
47 Kwon, J. Y., CHeigh, H. S. and Song, Y. O. 2004. Weight reduction and lipid lowering effects of Kimchi lactic acid powder in rats fed high fat diets. Kor. J. Food Sci. Technol. 36, 1014-1019.
48 Kim, O. S., Cho, Y. J., Lee, K., Yoon, S. H., Kim, M., Na, H., Park, S. C., Jeon, Y. S., Lee, J. H., Yi, H., Won, S. and Chun, J. 2012. Introducing EzTaxon-e: a prokaryotic16S rRNA gene sequence database with phylotypes that represent un ultured species. Int. J. Syst. Evol. Microbiol. 62, 716-721.   DOI
49 Kim, S. H., Kim, D. W., Park, S. Y., Kim, J. H., Kang, G. H., Kang, H. K., Yu, D. J., Na, J. C. and Lee, S. J. 2008. Effect of dietary Lactobacillus on growth performance, intestinal microflora, development of ileal villi, and intestinal mucosa in broiler chickens. J. Anim. Sci. Technol. 50, 667-676.   DOI
50 Kuda, T., Fujii, T., Saheki, K., Hasegawa, A. and Okuzumi, M. 1992. Effects of brown algae on faecal flora of rats. Nihon Suisan Gakk 58, 307-314.   DOI
51 Li, W. and Godzik, A. 2006. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22, 1658-1659.   DOI
52 Cui, C. B., Lee, E. Y., Lee, D. S. and Ham, S. S. 2010. Antimutagenic and anticancer effects of ethanol extract from Korean traditional Doenjang added sea tangle. Kor. J. Food Sci. Technol. 42, 620-626.
53 Yang, T., Owen, J. L., Lightfoot, Y. L., Kladde, M. P. and Mohamadzadeh, M. 2013. Microbiota impact on the epigenetic regulation of colorectal cancer. Trends. Mol. Med. 19, 714-725.   DOI
54 Zhang, X., Wang, H., Yin, P., Fan, H., Sun, L. and Liu, Y. 2017. Flaxseed oil ameliorates alcoholic liver disease via anti-inflammation and modulating gut microbiota in mice. Lipids Health Dis. 16, 44.   DOI
55 Chen, J., Zhou, J., Wei, S., Xie, Z., Wen, C. and Xu, G. 2015. Effect of a traditional Chinese medicine prescription Quzhuotongbi decoction on hyperuricemia model rats studied by using serum metabolomics based on gas chromatography-mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 1026, 272-278.
56 Cho, I. S., Han, Y. H., Lee, G. Y. and Park, K. Y. 2007. Search for medicinal plants on improvable effect of intestinal microflora. Kor. Soc. Med. Crop. Sci. 15, 26-29.
57 Choi, H. J., Kil, J. H., Bak, S. S., Kong, C. S., Park, K. Y., Seo, Y. W. and Lim, S. Y. 2006. Inhibitory effects of solvent extracts from seven brown algae on mutagenicity and growth of human cancer cells. J. Life Sci. 16, 1080-1086.   DOI
58 Choi, J. S., Shin, S. H., Ha, Y. M., Kim, Y. C., Kim, T. B., Park, S. M., Choi, I. S., Song, H. J. and Choi, Y. J. 2008. Mineral contents and physiological activities of dried sea tangle (Laminaria japonica) collected from Gijang and Wando in Korea. J. Life Sci. 18, 474-481.   DOI
59 Crescenzo, R., Mazzoli, A., Di Luccia, B., Bianco, F., Cancelliere, R., Cigliano, L., Liverini, G., Baccigalupi, L. and Iossa, S. 2017. Dietary fructose causes defective insulin signalling and ceramide accumulation in the liver that can be reversed by gut microbiota modulation. Food Nutr. Res. 61, 1331657.   DOI
60 Duncan, D. B. 1955. Multiple range and multiple F tests. Biometrics 11, 1-42.   DOI
61 Duncan, S. H., Louis, P. and Flint, H. J. 2004. Lactate-utilizing bacteria, isolated from human feces that produce butyrate as a major fermentation product. Appl. Environ. Microbiol. 70, 5810-5817.   DOI
62 Oh, S. I., Sung, J. M. and Lee, K. J. 2014. Physicochemical characteristics and antioxidative effects of barley soybean paste (Doenjang) containing kelp extracts. J. Kor. Soc. Food Sci. Nutr. 43, 1843-1851.   DOI
63 Louis, P., Young, P., Holtrop, G. and Flint, H. J. 2010. Diversity of human colonic butyrate-producing bacteria revealed by analysis of the butyryl-CoA:acetate CoA-transferase gene. Environ. Microbiol. 12, 304-314.   DOI
64 Mokdad, A. H., Bowman, B. A., Ford, E. S., Vinicor, F., Marks, J. S. and Koplan, J. P. 2001. The continuing epidemics of obesity and diabetes in the United States. JAMA 286, 1195-200.   DOI
65 Neyrinck, A. M., Possemiers, S., Druart, C., Wiele, T. V., Backer, F. D., Cani, P. D., Larondelle, Y. and Delzenne, N. M. 2011. Prebiotic Effects of wheat Arabinoxyln related to the increase in Bifidofacteria, Roseburia and Bacteroides/ Prevotella in diet-induced obese mice. PLos One 6, e20944.   DOI
66 Olli, K., Saarinen, M. T., Forssten, S. D., Madetoja, M., Herzig, K. H. and Tiihonen, K. 2016. Independent and combined effects of lactitol, polydextrose, and bacteroides thetaiotaomicron on postprandial metabolism and body weight in rats fed a high-fat diet. Front. Nutr. 3, 15.
67 Park, J. H., Han, N. S., Yoo, J. Y., Shin, H. K. and Koo, Y. J. 1993. Screening of the foodstuffs influencing the growth of Bifidobacterium spp. and Clostridium perfringens. Kor. J. Food Sci. Technol. 25, 582-588.
68 Park, Y. H., Kim, J. G., Shin, Y. W., Kim, H. S., Kim, Y. J., Chun, T. H., Kim, S. H. and Hang, K. Y. 2008. Effects of Lactobacillus acidophilus 43121 and a mixture of Lactobacillus casei and Bifidobacterium longum on the serum cholesterol level and fecal sterol excretion in hypercholesterolemia-induced pigs. Biosci. Biotechnol. Biochem. 72, 595-600.   DOI