• 제목/요약/키워드: interval-valued fuzzy measures

검색결과 25건 처리시간 0.038초

구간치 퍼지측도와 관련된 수게노적분에 의해 모델화된 언어 정량자에 관한 연구 (A note on Linguistic quantifiers modeled by Sugeno integral with respect to an interval-valued fuzzy measures)

  • 장이채;김태균;김현미
    • 한국지능시스템학회논문지
    • /
    • 제20권1호
    • /
    • pp.1-6
    • /
    • 2010
  • Ying[M.S. Ying, Linguistic quantifiers modeled by Sugeno integrals, Artificial Intelligence 170(2006) 581-606] studied a framework for modeling quantifiers in natural languages in which each linguistic quantifier is represented by a family of fuzzy measures and the truth value of a quantified proposition is evaluated by using Sugeno integral. In this paper, we consider interval-valued fuzzy measures and interval quantifiers which are the generalized concepts of fuzzy measures and quantifiers, respectively. We also investigate logical properties of a first order language with interval quantifiers modeled by the Sugeno integral with respect to an interval-valued fuzzy measures.

THE APPLICATION OF INTERVAL-VALUED CHOQUET INTEGRALS IN MULTI CRITERIA DECISION AID

  • Jang, Lee-Chae
    • Journal of applied mathematics & informatics
    • /
    • 제20권1_2호
    • /
    • pp.549-556
    • /
    • 2006
  • In this paper, we consider interval-valued Choquet integrals and fuzzy measures. Using these properties, we discuss some applications of them in multicriteria decision aid. In particular, we show how these interval-valued Choquet integrals can model behavioral analysis of aggregation in ulticriteria decision aid.

구간 값 직관적 퍼지집합들 사이의 거리 (Distances between Interval-valued Intuitionistic Fuzzy Sets)

  • 박진한;임기문;이부영;손미정
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2007년도 춘계학술대회 학술발표 논문집 제17권 제1호
    • /
    • pp.175-178
    • /
    • 2007
  • We give a geometrical interpretation of the interval-valued fuzzy set. So, based on the geometrical background, we propose new distance measures between interval-valued fuzzy sets and compare these measures with distance measures proposed by Burillo and Bustince and Grzegorzewski, respectively. Furthermore, we extend three methods for measuring distances between interval-valued fuzzy sets to interval-valued intuitionistic fuzzy sets.

  • PDF

On Choquet Integrals with Respect to a Fuzzy Complex Valued Fuzzy Measure of Fuzzy Complex Valued Functions

  • Jang, Lee-Chae;Kim, Hyun-Mee
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제10권3호
    • /
    • pp.224-229
    • /
    • 2010
  • In this paper, using fuzzy complex valued functions and fuzzy complex valued fuzzy measures ([11]) and interval-valued Choquet integrals ([2-6]), we define Choquet integral with respect to a fuzzy complex valued fuzzy measure of a fuzzy complex valued function and investigate some basic properties of them.

THE AUTOCONTINUITY OF MONOTONE INTERVAL-VALUED SET FUNCTIONS DEFINED BY THE INTERVAL-VALUED CHOQUET INTEGRAL

  • Jang, Lee-Chae
    • 호남수학학술지
    • /
    • 제30권1호
    • /
    • pp.171-183
    • /
    • 2008
  • In a previous work [18], the authors investigated autocontinuity, converse-autocontinuity, uniformly autocontinuity, uniformly converse-autocontinuity, and fuzzy multiplicativity of monotone set function defined by Choquet integral([3,4,13,14,15]) instead of fuzzy integral([16,17]). We consider nonnegative monotone interval-valued set functions and nonnegative measurable interval-valued functions. Then the interval-valued Choquet integral determines a new nonnegative monotone interval-valued set function which is a generalized concept of monotone set function defined by Choquet integral in [18]. These integrals, which can be regarded as interval-valued aggregation operators, have been used in [10,11,12,19,20]. In this paper, we investigate some characterizations of monotone interval-valued set functions defined by the interval-valued Choquet integral such as autocontinuity, converse-autocontinuity, uniform autocontinuity, uniform converse-autocontinuity, and fuzzy multiplicativity.

Some characterizations of a mapping defined by interval-valued Choquet integrals

  • Jang, Lee-Chae;Kim, Hyun-Mee
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제7권1호
    • /
    • pp.66-70
    • /
    • 2007
  • Note that Choquet integral is a generalized concept of Lebesgue integral, because two definitions of Choquet integral and Lebesgue integral are equal if a fuzzy measure is a classical measure. In this paper, we consider interval-valued Choquet integrals with respect to fuzzy measures(see [4,5,6,7]). Using these Choquet integrals, we define a mappings on the classes of Choquet integrable functions and give an example of a mapping defined by interval-valued Choquet integrals. And we will investigate some relations between m-convex mappings ${\phi}$ on the class of Choquet integrable functions and m-convex mappings $T_{\phi}$, defined by the class of closed set-valued Choquet integrals with respect to fuzzy measures.

퍼지수치 퍼지수 상의 쇼케이 거리측도에 관한 성질 (A note on the Choquet distance measures for fuzzy number-valued fuzzy numbers)

  • 장이채;김원주
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2006년도 춘계학술대회 학술발표 논문집 제16권 제1호
    • /
    • pp.365-369
    • /
    • 2006
  • 구간치 퍼지집합은 Gorzalczang(1983)과 Turken(1986)에 의해 처음 제의되었다. 이를 토대로 Wang과 Li는 구간치 퍼지수에 관한 연산으로 일반화 하여 연구하였다. 최근에 홍(2002)는 왕과 리의 이론을 리만적분에 의해 구간치 퍼지집합상의 거리측도에 관한 연구를 하였다. 우리는 일반측도와 관련된 리만적분 대신에 퍼지측도와 관련된 쇼케이적분을 이용한 구간치 퍼지수 상의 쇼케이 거리측도를 연구하였다(2005). 본 논문에서는 퍼지수에서 퍼지수로의 쇼케이 거리측도를 정의하고 이와 관련된 성질들을 조사하였다.

  • PDF

A NOTE ON THE MONOTONE INTERVAL-VALUED SET FUNCTION DEFINED BY THE INTERVAL-VALUED CHOQUET INTEGRAL

  • Jang, Lee-Chae
    • 대한수학회논문집
    • /
    • 제22권2호
    • /
    • pp.227-234
    • /
    • 2007
  • At first, we consider nonnegative monotone interval-valued set functions and nonnegative measurable interval-valued functions. In this paper we investigate some properties and structural characteristics of the monotone interval-valued set function defined by an interval-valued Choquet integral.

구간치 퍼지수 상의 쇼케이 거리측도에 관한 성질 (Some properties of Choquet distance measures for interval-valued fuzzy numbers)

  • 장이채;김원주
    • 한국지능시스템학회논문지
    • /
    • 제15권7호
    • /
    • pp.789-793
    • /
    • 2005
  • 구간치 퍼지집합은 Gorzalczan응(1983)과 Turken(1986)에 의해 처음 제의되었다. 이를 토대로 Wang과 Li는 구간치 퍼지수에 관한 연산으로 일반화하여 연구하였다. 최근에 홍(2002)는 왕과 리의 이론을 기만적분에 의해 구간치 퍼지집합상의 거리측도에 관한 연구를 하였다. 본 논문에서 우리는 일반측도와 관련된 리만적분 대신에 퍼지측도와 관련된 쇼케이적분을 이용한 구간치 퍼지수 상의 쇼케이 거리측도를 정의하고 이와 관련된 성질들을 조사하였다.