A NOTE ON THE MONOTONE INTERVAL-VALUED SET FUNCTION DEFINED BY THE INTERVAL-VALUED CHOQUET INTEGRAL

LEE-CHAE JANG

ABSTRACT. At first, we consider nonnegative monotone interval-valued set functions and nonnegative measurable interval-valued functions. In this paper we investigate some properties and structural characteristics of the monotone interval-valued set function defined by an interval-valued Choquet integral.

1. Introduction

In a previous work [19] the authors investigated monotone set function defined by Choquet integral ([3, 4, 12, 13, 14]) instead of fuzzy integral ([15, 16, 17, 18]). This construction is a useful method to form sound monotone set functions, including fuzzy measures, in various application areas, such as decision making, information theory, expected utility theory, and risk analysis.

Let X be a set and (X,Ω) a measurable space. A nonnegative set function μ is called a fuzzy measure if it is monotone and $\mu(\emptyset) = 0$. Then we consider the interval-valued set function ν defined by an interval-valued Choquet integral

$$\bar{\nu}(A) = (C) \int_A \bar{f} d\mu, \quad \forall A \in \Omega$$

is monotone on Ω with $\bar{\nu}(\emptyset) = [0,0]$ ([9]), where \bar{f} is an interval-valued function. We note that set-valued Choquet integrals was first introduced by Jang and Kwon ([6]) and restudied by Zhang, Guo and Lia ([21]) and that the theory about set-valued integrals has drawn much attention due to numerous applications in mathematics, economics, theory of control and many other fields. In the papers ([6, 7, 8, 9, 10, 20, 21]), they have been studied some properties of set-valued Choquets and interval-valued Choquet integrals. In this paper, we investigate some basic properties and structural characteristics of monotone interval-valued Choquet integrals.

Received April 10, 2006.

²⁰⁰⁰ Mathematics Subject Classification. 28A45, 28A48, 28E10.

Key words and phrases. interval-valued set functions, interval-valued functions, fuzzy measures, Choquet integrals.

2. Preliminaries and definitions

A fuzzy measure μ is said to be lower semi-continuous if for every increasing sequence $\{A_n\}$ in Ω , we have $\mu(\bigcup_{n=1}^{\infty}A_n)=\lim_{n\to\infty}\mu(A_n)$. A fuzzy measure μ is said to be upper semi-continuous if for every decreasing sequence $\{A_n\}$ in Ω and $\mu(A_1) < \infty$, we have $\mu(\bigcap_{n=1}^{\infty} A_n) = \lim_{n \to \infty} \mu(A_n)$. If μ is both lower semi-continuous and upper semi-continuous, it is said to be *continuous*. A fuzzy measure μ is said to be *finite* if $\mu(X)$ is finite.

Definition 2.1. ([3, 4, 12, 13, 14]) (1) The Choquet integral of a measurable function f with respect to a fuzzy measure μ on $A \in \Omega$ is defined by

$$(C)\int_A f d\mu = \int_0^\infty \mu(\{x|f(x)>\alpha\}\cap A) d\alpha$$

where the integrand on the right-hand side is an ordinary one.

(2) A measurable function f is called c-integrable if the Choquet integral of f can be defined and its value is finite.

Instead of $(C) \int_X f d\mu$, we will write $(C) \int f d\mu$. Throughout this paper, R^+ will denote the interval $[0,\infty)$. The Choquet integral is a generalization of the Lebesgue integral, since they coincide when μ is a classical (σ -additive) measure.

Definition 2.2. ([4]) A set $N \in \Omega$ is called a null set (with respect to μ) if $\mu(A \cap N) = \mu(A)$ for all $A \in \Omega$.

We note that $[P(x)\mu - a.e.$ on A means there exists a null set N such P(x)is true for all $x \in A - N$ where P(x) is a proposition concerning the point of

Definition 2.3. ([3, 4, 12, 13, 14]) Let f, g be nonnegative measurable functions. We say that f and g are comonotonic, in symbol $f \sim q$ if

$$f(x) < f(x') \Rightarrow g(x) \le g(x')$$
 for all $x, x' \in X$.

Theorem 2.4. ([3,4,12,13,14]) Let f,g,h be nonnegative measurable functions. Then we have

- (1) $f \sim f$,
- (2) $f \sim g \Rightarrow g \sim f$,
- (3) $f \sim a$ for all $a \in \mathbb{R}^+$
- (4) $f \sim q$ and $q \sim h \Rightarrow f \sim (q+h)$.

Theorem 2.5. ([3, 4, 12, 13, 14]) Let f, g be nonnegative measurable functions. Then we have the followings.

- $\begin{array}{ll} (1) \ \ I\!f \ f \leq g, \ t\!hen \ (C) \int f d\mu \leq (C) \int g d\mu. \\ (2) \ \ I\!f \ A \subset B \ \ and \ A, B \in \Omega, \ t\!hen \ (C) \int_A f d\mu \leq (C) \int_B f d\mu. \end{array}$
- (3) If $f \sim g$ and $a, b \in R^+$, then

$$(C)\int (af+bg)d\mu=a(C)\int fd\mu+b(C)\int gd\mu.$$

(4) If $(f \vee g)(x) = f(x) \vee g(x)$ and $(f \wedge g)(x) = f(x) \wedge g(x)$ for all $x \in X$, then

$$(C) \int f \vee g d\mu \geq (C) \int f d\mu \vee (C) \int g d\mu$$

and

$$(C) \int f \wedge g d\mu \leq (C) \int f d\mu \wedge (C) \int g d\mu.$$

We denote $I(R^+)$ by

$$I(R^+) = {\bar{a} = [a^-, a^+]|a^- \le a^+, a^-, a^+ \in R^+}.$$

For any $a \in \mathbb{R}^+$, we define a = [a, a]. Obviously, $a \in I(\mathbb{R}^+)$.

Definition 2.6. If $\bar{a} = [a^-, a^+], \bar{b} = [b^-, b^+] \in I(R^+)$, then we define:

- (1) $\bar{a} \wedge \bar{b} = [a^- \wedge b^-, a^+ \wedge b^+],$
- (2) $\bar{a} \vee \bar{b} = [a^- \vee b^-, a^+ \vee b^+],$
- (3) $\bar{a} \leq \bar{b}$ if and only if $a^- \leq b^-$ and $a^+ \leq b^+$,
- (4) $\bar{a} < \bar{b}$ if and only if $\bar{a} \le \bar{b}$ and $\bar{a} \ne \bar{b}$,
- (5) $\bar{a} \subset \bar{b}$ if and only if $b^- \leq a^- \leq a^+ \leq b^+$.

Theorem 2.7. Let $\bar{a}, \bar{b}, \bar{c} \in I(R^+)$. Then we have

- (1) idempotent law: $\bar{a} \wedge \bar{a} = \bar{a}, \ \bar{a} \vee \bar{a} = \bar{a},$
- (2) commutative law: $\bar{a} \wedge \bar{b} = \bar{b} \wedge \bar{a}, \bar{a} \vee \bar{b} = \bar{b} \vee \bar{a},$
- (3) associative law:

$$\bar{a} \wedge (\bar{b} \wedge \bar{c}) = (\bar{a} \wedge \bar{b}) \wedge \bar{c}$$

$$\bar{a} \lor (\bar{b} \lor \bar{c}) = (\bar{a} \lor \bar{b}) \lor \bar{c}$$

- (4) absorption law: $\bar{a} \wedge (\bar{b} \vee \bar{b}) = \bar{a} \vee (\bar{a} \wedge \bar{b}) = \bar{a}$
- (5) distributive law:

$$\bar{a}\wedge(\bar{b}\vee\bar{c})=(\bar{a}\wedge\bar{b})\vee(\bar{a}\wedge\bar{c})$$

$$\bar{a}\vee(\bar{b}\wedge\bar{c})=(\bar{a}\vee\bar{b})\wedge(\bar{a}\vee\bar{c}).$$

Clearly, we have the following theorem for multiplication and Hausdorff metric on $I(\mathbb{R}^+)$.

Theorem 2.8. (1) If we define $\bar{a} \cdot \bar{b} = \{x \cdot b | x \in \bar{a}, y \in \bar{b}\}$ for $\bar{a} \cdot \bar{b} \in I(R^+)$, then we have

$$\bar{a} \cdot \bar{b} = [a^- \cdot b^-, a^+ \cdot b^+].$$

(2) If $d_H: I(R^+) \times I(R^+) \to [0, \infty)$ is a Hausdorff metric, then we have

$$d_H(\bar{a}, \bar{b}) = \max\{|a^- - b^-|, |a^+ - b^+|\}.$$

3. Interval-valued Choquet integrals

Let $C(R^+)$ be the class of closed subsets of R^+ . We denote a real-valued function $f: X \to R^+$, a closed set-valued function $\bar{f}: X \to C(R^+) \setminus \{\emptyset\}$.

Definition 3.1. ([1, 2]) A closed set-valued function \bar{f} is said to be *measurable* if for each open set $O \subset R^+$,

$$\bar{f}^{-1}(O) = \{ x \in X | \bar{f}(x) \cap O \neq \emptyset \} \in \Omega.$$

Definition 3.2. ([8, 19, 21]) Let $\{A_n\} \subset C(R^+)$ be a sequence and $A \in C(R^+)$. We define

- (1) $A_n \uparrow (\downarrow) A(\text{order})$ if and only if $d_H(A_n, A) \to 0$ as $n \to \infty$ and $A_n \le A_{n+1}(A_n \ge A_{n+1})$ for all $n = 1, 2, \ldots$,
- (2) $A_n \uparrow (\downarrow) A$ (inclusion) if and only if $d_H(A_n, A) \to 0$ and $A_n \subset A_{n+1}(A_n \supset A_{n+1})$ for all $n = 1, 2, \ldots$

Definition 3.3. ([6, 7, 8, 9, 10, 11, 21]) (1) Let $A \in \Omega$. The Choquet integral of \bar{f} on A is defined by

$$(C)\int_A \bar{f} d\mu = \{(C)\int_A f d\mu | f \in S(\bar{f})\}$$

where $S(\bar{f})$ is the family of measurable selections of \bar{f} .

- (2) \bar{f} is said to be *c*-integrable if $(C) \int \bar{f} d\mu \neq \emptyset$.
- (3) \bar{f} is said to be Choquet integrably bounded if there is a c-integrable function g such that

$$\parallel \bar{f} \parallel = \sup_{r \in \bar{f}(x)} |r| \le g(x), \text{ for all } x \in X.$$

Instead of $(C) \int_X \bar{f} d\mu$, we write $(C) \int \bar{f} d\mu$. Obviously, $(C) \int \bar{f} d\mu$ may be empty. We remark that if $A, B \in C(X)$ (the class of closed subsets of X), then $A \leq B$ means inf $A \leq \inf B$ and $\sup A \leq \sup B$.

Theorem 3.4. If a closed set-valued function \bar{f} is c-integrable, then

$$A \leq B \text{ and } A, B \in C(X) \Rightarrow (C) \int_A \bar{f} d\mu \leq (C) \int_B \bar{f} d\mu$$

and

$$A \subset B \ and \ A, B \in C(X) \Rightarrow (C) \int_{A} \bar{f} d\mu \subset (C) \int_{B} \bar{f} d\mu.$$

4. Main results

In this section, we investigate structural characteristics of monotone intervalvalued set functions defined by the interval-valued Choquet integral. The concept of absolute continuity in classical measure theory has been generalized in as many so 21 different types for fuzzy measures (or continuous fuzzy measures) in [18]. In Z. Wang et al. [11] they obtained that these generalizations were applicable to nonnegative monotone set functions. We consider two of the 21 generalized types of absolutely continuity, which are labeled in [18] as types I and IV; they are defined as follows.

Definition 4.1. Let μ be a fuzzy measure on Ω . We say that a nonnegative monotone interval-valued set function $\bar{\nu}$ on Ω is absolutely continuous of type I with respect to μ , denoted by $\bar{\nu} \ll_I \mu$ if and only if $\bar{\nu}(A) = [0,0]$ whenever $A \in \Omega$ and $\mu(A) = 0$; we say that $\bar{\nu}$ on Ω is absolutely continuous of type VI with respect to μ , denoted by $\bar{\nu} \ll_{VI} \mu$ if and only if $d_H(\bar{\nu}(A_n), [0,0]) \to 0$ as $n \to \infty$ whenever $\{A_n\} \subset \Omega$ and $\mu(A_n) \to 0$.

Using Theorem 3.4, it is easy to show that the interval-valued set function $\bar{\nu}_{\bar{f}}$ on Ω defined by

(4.1)
$$\bar{\nu}_{\bar{f}}(A) = (C) \int_{A} \bar{f} d\mu, \quad \forall A \in \Omega$$

is also nonnegative monotone and vanishing at \emptyset . Then by Theorem 3.4, we also obtain that if \bar{f} is Choquet integrably bounded and a fuzzy measure μ is continuous, there exist two nonnegative monotone interval-valued set functions ν_{f^-}, ν_{f^+} such that

$$(4.2) \bar{\nu}(A) = [\nu_{f^-}(A), \nu_{f^+}(A)], \quad \forall A \in \Omega$$

where
$$\nu_{f^-}(A) = (C) \int_A f^- d\mu$$
 and $\nu_{f^+}(A) = (C) \int_A f^+ d\mu$.

Theorem 4.2. ([19]) Let $A \in \Omega$ and ν_g be defined in terms of a fuzzy measure μ and a real -valued function g by $\nu_g(A) = \int_A g d\mu$.

- (1) If g is measurable, then $\nu_g \ll_I \mu$.
- (2) If g is Choquet integrable, then $\nu_g \ll_{IV} \mu$.

Theorem 4.3. Let an interval-valued set function $\bar{\nu}_{\bar{f}}$ be defined in terms of μ and \bar{f} by (4.1). If \bar{f} is Choquet integrably bounded and a fuzzy measure μ is continuous, then $\bar{\nu}_{\bar{f}} \ll_I \mu$.

Proof. We note that $\bar{f} = [f^-, f^+]$ and that if \bar{f} is Choquet integrably bounded, then clearly f^+, f^- are c-integrable. By Theorem 4.2(1)),

$$\nu_{f^-} \ll_I \mu$$
 and $\nu_{f^+} \ll_I \mu$.

Thus, if $A \in \Omega$ and $\mu(A) = 0$, then we have

$$\nu_{f^{-}}(A) = 0$$
 and $\nu_{f^{+}}(A) = 0$.

Using the equation (4.2), we have $\bar{\nu}_{\bar{f}}(A) = [\nu_{f^-}(A), \nu_{f^+}(A)] = [0, 0]$. Therefore we have $\bar{\nu}_{\bar{f}} \ll_I \mu$.

Theorem 4.4. Let an interval-valued set function $\bar{\nu}_{\bar{f}}$ be defined in terms of μ and \bar{f} by (4.1). If \bar{f} is Choquet integrably bounded and a fuzzy measure μ is continuous, then $\bar{\nu}_{\bar{f}} \ll_{VI} \nu$.

Proof. By the equation (4.2), we have $\bar{\nu}_{\bar{f}} = [\nu_{f^-}, \nu_{f^+}]$. Then by Theorem 4.2(2), we obtain

$$\nu_{f^-} \ll_{VI} \mu$$
 and $\nu_{f^+} \ll_{VI} \mu$.

Thus, if $\{A_n\} \subset \Omega$ and $\mu(A_n) \to 0$ as $n \to \infty$, then

$$\nu_{f^-}(A_n) \to 0$$
 and $\nu_{f^-}(A_n) \to 0$ as $n \to \infty$.

Thus, by Theorem 2.8(2),

$$d_H(\bar{\nu}_{\bar{f}}(A_n), [0, 0]) = \max\{|\nu_{f^-}(A_n)|, |\nu_{f^+}(A_n)|\} \to 0$$

 \Box

as $n \to \infty$. Therefore we have $\bar{\nu}_{\bar{f}} \ll_I \mu$.

Now, we show that the lower semi-continuity and the upper semi-continuity of μ are preserved in $\bar{\nu}_{\bar{f}}$ when $\bar{\nu}_{\bar{f}}$ is constructed from a fuzzy measure μ and an interval-valued function \bar{f} by the interval-valued Choquet integral according to (4.1).

- **Definition 4.5.** (1) A nonnegative monotonic interval-valued set function $\bar{\nu}$ is said to be *lower semi-continuous in the meaning of order* if $\bar{\nu}(A_n) \uparrow [0,0]$ (order), whenever $\{A_n\}$ is an increasing sequence in Ω and $\mu(A_n) \to 0$ as $n \to \infty$.
- (2)A nonnegative monotonic interval-valued set function $\bar{\nu}$ is said to be upper semi-continuous in the meaning of inclusion if $\bar{\nu}(A_n) \downarrow [0,0]$ (inclusion), whenever $\{A_n\}$ is an decreasing sequence in Ω , $\mu(A_1) < \infty$ and $\mu(A_n) \to 0$ as $n \to \infty$.
- (3) A nonnegative monotonic interval-valued set function $\bar{\nu}$ is said to be continuous in the meaning of order (in the meaning of inclusion) if it is both a lower semi-continuous in meaning of order (in meaning of inclusion) and an upper semi-continuous in meaning of order (in the meaning of inclusion).

Theorem 4.6. ([19]) Let $A \in \Omega$ and ν_g be defined in terms of a fuzzy measure μ and a real -valued function g by $\nu_g(A) = \int_A g d\mu$.

- (1) If μ is lower semi-continuous and g is Choquet integrable, then ν_g is lower semi-continuous in the meaning of inclusion.
- (2) If μ is upper semi-continuous and g is Choquet integrable, then ν_g is upper semi-continuous in the meaning of inclusion.
- **Theorem 4.7.** (1) Let an interval-valued set function $\bar{\nu}_{\bar{f}}$ be defined in terms of μ and \bar{f} by (4.1). If a fuzzy measure μ is a lower semicontinuous and \bar{f} is Choquet integrably bounded, then $\bar{\nu}_{\bar{f}}$ is a lower semi-continuous in the meaning of inclusion.
- (2) Let an interval-valued set function $\bar{\nu}_{\bar{f}}$ be defined in terms of μ and \bar{f} by (4.1). If a fuzzy measure μ is an upper semicontinuous and \bar{f} is Choquet integrably bounded, then $\bar{\nu}_{\bar{f}}$ is an upper semi-continuous in the meaning of inclusion.

Proof. (1) Suppose that a fuzzy measure μ is a lower semi-continuous. Let $\{A_n\}$ be a sequence in Ω with $A_n \subset A_{n+1}$ for $n=1,2,\ldots$ and $\mu(A_n) \to 0$ as $n \to \infty$. Since \bar{f} is Choquet integrably bounded, there exists a c-integrable function g such that

$$f \leq g$$
 for all selections $f \in S(\bar{f})$.

Thus, by Theorem 4.6(1), ν_g is a lower semi-continuous, that is, $\nu_g(A_n) \to 0$ as $n \to \infty$. Thus

$$\begin{array}{ll} d_{H}(\bar{\nu}_{\bar{f}}(A_{n}),[0,0]) \\ = & \max\{\sup_{u\in\bar{\nu}_{\bar{f}}(A_{n})}\inf_{v\in[0,0]}|u-v|,\,\sup_{v\in[0,0]}\inf_{u\in\bar{\nu}_{\bar{f}}(A_{n})}|u-v|\} \\ = & \max\{\sup_{u\in\bar{\nu}_{\bar{f}}(A_{n})}|u|,\,\inf_{u\in\bar{\nu}_{\bar{f}}(A_{n})}|u|\} \\ = & \sup_{u\in\bar{\nu}_{\bar{f}}(A_{n})}|u| \\ \leq & |\nu_{g}(A_{n})|. \end{array}$$

Thus, we have

$$0 \le \lim_{n \to \infty} d_H(\bar{\nu}_{\bar{f}}(A_n), [0, 0]) \le \lim_{n \to \infty} |\nu_g(A_n)| = 0,$$

that is, $\bar{\nu}_{\bar{f}}$ is lower semi-continuous in the meaning of inclusion.

By the same method of the proof of Theorem 4.7, it is to show that under the same hypothesis of Theorem 4.7 we have $\bar{\nu}_{\bar{f}}$ is a lower (an upper) semi-continuous in the meaning of order.

References

- [1] J. Aubin, Set-valued analysis, 1990, Birkauser Boston.
- [2] R. J. Aumann, Integrals of set-valued functions, J. Math. Anal. Appl. 12 (1965), 1-12.
- [3] M. J. Bilanos, L. M. de Campos and A. Gonzalez, Convergence properties of the monotone expectation and its application to the extension of fuzzy measures, Fuzzy Sets and Systems 33 (1989), 201–212.
- [4] L. M. de Campos and M. J. Bilanos, Characterization and comparison of Sugeno and Choquet integrals, Fuzzy Sets and Systems 52 (1992), 61-67.
- [5] W. Cong, RSu integral of interval-valued functions and fuzzy-valued functions redefined, Fuzzy Sets and Systems 84 (1996), 301–308.
- [6] L. C. Jang and J. S. Kwon, On the representation of Choquet integrals of set-valued functions and null sets, Fuzzy Sets and Systems 112 (2000), 233-239.
- [7] L. C. Jang, T. Kim, and J. D. Jeon, On set-valued Choquet integrals and convergence theorems, Advanced Studies and Contemporary Mathematics 6 (2003), no. 1, 63–76.
- [8] _____, On set-valued Choquet integrals and convergence theorems (II), Bull. Korean Math. Soc. 40 (2003), no. 1, 139–147.
- [9] L. C. Jang, T. Kim, and D. Park, A note on convexity and comonotonically additivity of set-valued Choquet integrals, Far East J. Appl. Math. 11 (2003), no. 2, 137–148.
- [10] L. C. Jang, T. Kim, J. D. Jeon, and W. J. Kim, On Choquet integrals of measurable fuzzy number-valued functions, Bull. Korean Math. Soc. 41 (2004), no. 1, 95–107.
- [11] L. C. Jang, Interval-valued Choquet integrals and their applications, J. of Applied Mathematics and computing 16 (2004), no. 1-2, 429-445.

- [12] T. Murofushi and M. Sugeno, An interpretation of fuzzy measures and the Choquet integral as an integral with respect to a fuzzy measure, Fuzzy Sets and Systems 29 (1989), 201-227.
- [13] _____, A theory of Fuzzy measures: representations, the Choquet integral, and null sets, J. Math. Anal. and Appl. 159 (1991), 532-549.
- [14] _____, RSome quantities represented by Choquet integral, Fuzzy Sets and Systems 56 (1993), 229-235.
- [15] H. Suzuki, On fuzzy measures defined by fuzzy integrals, J. of Math. Anal. Appl. 132 (1998), 87-101.
- [16] Z. Wang, The autocontinuity of set function and the fuzzy integral, J. of Math. Anal. Appl. 99 (1984), 195-218.
- [17] ______, On the null-additivity and the autocontinuity of fuzzy measure, Fuzzy Sets and Systems 45 (1992), 223–226.
- [18] Z. Wang, G. J. Klir, and W. Wang, Fuzzy measures defined by fuzzy integral and their absolute continuity, J. Math. Anal. Appl. 203 (1996), 150-165.
- [19] _____, Monotone set functions defined by Choquet integral, Fuzzy measures defined by fuzzy integral and their absolute continuity, Fuzzy Sets and Systems 81 (1996), 241–250.
- [20] R. Yang, Z. Wang, P.-A. Heng, and K. S. Leung, Fuzzy numbers and fuzzification of the Choquet integral, Fuzzy Sets and Systems 153 (2005), 95-113.
- [21] D. Zhang, C. Guo, and D. Liu, Set-valued Choquet integrals revisited, Fuzzy Sets and Systems 147 (2004), 475–485.

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE COLLEGE OF SCIENCE KONKUK UNIVERSITY CHUNGJU 380-701, KOREA E-mail address: leechae.jang@kku.ac.kr