On Choquet Integrals with Respect to a Fuzzy Complex Valued Fuzzy Measure of Fuzzy Complex Valued Functions

Lee-Chae Jang* and Hyun-Mee Kim**

*Dept. of Mathematics and Computer Science, Konkuk University Chungju 380-701, Korea, E-mail:leechae.jang@kku.ac.kr **Dept. of Mathematics, Kyunghee University Seoul 130-701, Korea, E-mail: kagness@khu.ac.kr

Abstract

In this paper, using fuzzy complex valued functions and fuzzy complex valued fuzzy measures ([11]) and interval-valued Choquet integrals ([2-6]), we define Choquet integral with respect to a fuzzy complex valued fuzzy measure of a fuzzy complex valued function and investigate some basic properties of them.

Key Words: fuzzy numbers, comonotonic, fuzzy complex numbers, fuzzy complex valued function, fuzzy complex valued fuzzy measures, Choquet integrals.

1. Introduction

Buckley [1] first defined the concept of fuzzy complex numbers and have studied the theory of fuzzy complex numbers, the differentiability and integrability of fuzzy complex valued functions on a complex plane $\mathbb C$. Wang and Li [11] studied generalized Lebesgue integrals of fuzzy complex valued functions.

By using the method of establishing the basic framework for fuzzy complex analysis, we will define Choquet integrals with respect to a fuzzy complex valued fuzzy measure of fuzzy complex valued functions. We note that interval-valued Choquet inetgrals were defined by Jang [2-6].

Let (X, Ω) be a measurable space. A mapping $\mu \colon \Omega \to [0, \infty]$ on X is called a fuzzy measure if it is satisfying the following conditions;

- (i) $\mu(\varnothing) = 0$,
- (ii) $\mu(A) \leq \mu(B)$,

whenever $A,B \subseteq \Omega$, $A \subset B$.

(iii) for every increasing sequence $\{A_n\}$ of measurable sets, we have

$$\mu(\,\cup_{\,n\,=\,1}^{\,\infty}A_n)=\underset{n\to\infty}{\lim}\mu(A_n)\,.$$

(iv) for every decreasing sequence $\{A_n\}$ of measurable sets and $\mu(A_1) < \infty$, we have

$$\mu(\bigcap_{n=1}^{\infty} A_n) = \lim_{n \to \infty} \mu(A_n).$$

In many papers, a fuzzy measure is satisfying the conditions (i) and (ii). In this paper, we assume that a fuzzy

Manuscript received Jul. 14, 2010; revised Aug. 17, 2010; accepted Aug. 23, 2010

measure is satisfying the four conditions (i)-(iv).

Definition 1.1 ([2-6]) (1) The Choquet integral of a measurable function f with respect to a fuzzy measure μ on $A{\subseteq}\Omega$ is defined by

$$(C)\int_{A} f d\mu = \int_{0}^{\infty} \mu(\{x|f(x) > r\} \cap A) dr$$

where the integral on the right-hand side is an ordinary

(2) A measurable function f is said to be integrable if the Choquet integral of f can be defined and its value is finite.

Instead of
$$(C)\int_X f d\mu$$
, we will write $(C)\int f d\mu$.

Throughout this paper, \mathbb{R}^+ will denote the interval $[0,\infty)$.

Definition 1.2 ([2-6]) A set $N \in \Omega$ is called a null set with respect to μ if $\mu(A \cup N) = \mu(A)$, for all $A \in \Omega$.

We note that $[P(x) \ \mu-a.e \ on \ A]$ means there exists a null set N such that P(x) is true for all $x{\in}A{-}N$, where P(x) is a proposition concerning the point of A.

Definition 1.3 ([2-8]) Let f,g be measurable nonnegative functions. We say that f is comonotonic to g, in symbol $f \sim g$ if and only if $f(x) < f(x') \Rightarrow g(x) \leq g(x')$ for all $x,x' \in X$.

Theorem 1.4 ([2-8]) Let f,g,h be measurable functions. Then we have

- (1) $f \sim f$.
- (2) If $f \sim g$, then $g \sim f$.
- (3) For all $a \in \mathbb{R}^+$, we have $f \sim a$.

On Choquet Integrals with Respect to a Fuzzy Complex Valued Fuzzy Measure of Fuzzy Complex Valued Functions

(4) If $f \sim g$ and $f \sim h$, then $f \sim g + h$.

Theorem 1.5 ([2-8]) Let f,g,h be measurable functions.

- (1) If $f \leq g$, then $(C) \int f d\mu \leq (C) \int g d\mu$.
- (2) If $A \subset B$ and $A, B \in \Omega$, then

$$(C)\int_{A}fd\mu \leq (C)\int_{B}fd\mu.$$

(3) If $f \sim g$ and $a,b \in \mathbb{R}^+$, then

$$(C)\int (af+bg)d\mu = a(C)\int fd\mu + b(C)\int gd\mu.$$

(4) If $(f \vee g)(x) = max\{f(x), g(x)\}$ and

 $(f \wedge g)(x) = min\{f(x),g(x)\}$ for all $x \in X$, then

$$(C)\int (f\wedge g)d\mu \leq (C)\int fd\mu\wedge (C)\int gd\mu.$$

Throughout this paper, $I(\mathbb{R}^+)$ is the class of all intervals in \mathbb{R}^+ , that is,

$$I(\mathbb{R}^+) = \{ [a^-, a^+] | a^-, a^+ \in \mathbb{R}^+ \text{ and } a^- \le a^+ \}.$$

For any $a \in \mathbb{R}^+$, we define a = [a, a]. Obviously, $a \in I(\mathbb{R}^+)$.

Definition 1.6 ([5,6]) If $\bar{a}, \bar{b} \in I(\mathbb{R}^+)$ and $k \in \mathbb{R}^+$, then we define

- (1) $\overline{a} + \overline{b} = [a^- + b^-, a^+ + b^+],$
- (2) $k \overline{a} = [ka^-, ka^+].$
- (3) $\overline{a}\overline{b} = [a^-b^-, a^+b^+],$
- (4) $\overline{a} \wedge \overline{b} = [a^- \wedge b^-, a^+ \wedge b^+],$
- (5) $\bar{a} \vee \bar{b} = [a^- \vee b^-, a^+ \vee b^+].$
- (6) $\overline{a} \le \overline{b}$ if and only if

$$a^- \leq b^-$$
 and $a^+ \leq b^+$.

- (7) $\overline{a} < \overline{b}$ if and only if $\overline{a} \le \overline{b}$ and $\overline{a} \ne \overline{b}$,
- (8) $\overline{a} \subseteq \overline{b}$ if and only if

$$b^- \le a^- \text{ and } a^+ \le b^+.$$

Theorem 1.7 ([5,6]) Let $\overline{a}, \overline{b} \in I(\mathbb{R}^+)$. Then the followings hold.

- (1) idempotent law: $\overline{a} \wedge \overline{a} = \overline{a}, \overline{a} \vee \overline{a} = \overline{a}$
- (2) commutative law:

$$\overline{a} \wedge \overline{b} = \overline{b} \wedge \overline{a}, \ \overline{a} \vee \overline{b} = \overline{b} \vee \overline{a},$$

(3) associative law:

$$(\overline{a} \wedge \overline{b}) \wedge \overline{c} = \overline{a} \wedge (\overline{b} \wedge \overline{c}),$$
$$(\overline{a} \vee \overline{b}) \vee \overline{c} = \overline{a} \vee (\overline{b} \vee \overline{c}),$$

(4) absorption law:

$$\overline{a} \wedge (\overline{a} \vee \overline{b}) = \overline{a} \vee (\overline{a} \wedge \overline{b}) = \overline{a}$$

(5) distributive law:

$$\overline{a} \wedge (\overline{b} \vee \overline{c}) = (\overline{a} \wedge \overline{b}) \vee (\overline{a} \wedge \overline{c}),$$
$$\overline{a} \vee (\overline{b} \wedge \overline{c}) = (\overline{a} \vee \overline{b}) \wedge (\overline{a} \vee \overline{c}).$$

Definition 1.8 ([5,6]) A set function $d_H \colon I(\mathbb{R}^+) \times I(\mathbb{R}^+) \to [0,\infty]$ is called the Hausdorff metric if

$$\begin{split} d_H(A,B) = & \max\{\sup_{x \;\in\; A} \; \inf_{y \;\in\; B} \; |x-y|, \\ & \sup_{y \;\in\; B} \; \inf_{x \;\in\; A} \; |x-y|\}, \end{split}$$

for all $A,B \in I(\mathbb{R}^+)$.

Theorem 1.9 ([5,6]) If $d_H: I(\mathbb{R}^+) \times I(\mathbb{R}^+) \to [0,\infty]$ is the Hausdorff metric, then we have for $\overline{a} = [a^-, a^+]$, $\overline{b} = [b^-, b^+] \in I(\mathbb{R}^+)$,

$$d_H(\bar{a}, \bar{b}) = \max\{|a^- - b^-|, |a^+ - b^+|\}.$$

For a sequence of intervals $\{\overline{a_n}\} \subset I(\mathbb{R}^+)$ and $\overline{a} \in I(\mathbb{R}^+)$, we say that $\{\overline{a_n}\}$ converges to \overline{a} , in symbol, $d_H - \lim_{n \to \infty} \overline{a_n} = \overline{a}$ if $d_H(\overline{a}_n, \overline{a}) \to 0 \ (n \to \infty)$.

Obviously, we obtain $d_H - \lim_{n \to \infty} \overline{a}_n = \overline{a}$ if and only if $a_n^- \to a^-$ and $a_n^+ \to a^+ (n \to \infty)$.

A fuzzy number u on \mathbb{R}^+ is a fuzzy set satisfying the following conditions (see[6,9,11]);

- (i)(normality) $\tilde{u}(x) = 1$ for some $x \in \mathbb{R}^+$,
- (ii)(fuzzy convexity) for every $\lambda \in (0,1]$,

$$\widetilde{u}_{\lambda} = \{x \in \mathbb{R}^+ | \widetilde{u}(x) \ge \lambda\} \in I(\mathbb{R}^+).$$

Let $FN(\mathbb{R}^+)$ denote the set of fuzzy numbers, we define basic arithmetic operations on $FN(\mathbb{R}^+)$ (see [6,9,11]); for each pair $\tilde{u}, \tilde{v} \in FN(\mathbb{R}^+)$ and $k \in \mathbb{R}^+$,

$$(\widetilde{u}+\widetilde{v})_{\lambda}=\widetilde{u_{\lambda}}+\widetilde{v_{\lambda}},\ (k\,\widetilde{u})_{\lambda}=k\,\widetilde{u_{\lambda}},$$

 $\tilde{u} \leq \tilde{v}$ if and only if $\tilde{u}_{\lambda} \leq \tilde{v}_{\lambda}$ for all $\lambda \in (0,1]$, $\tilde{u} < \tilde{v}$ if and only if $\tilde{u} \leq \tilde{v}$ and $\tilde{u} \neq \tilde{v}$,

In section 2, we introduce fuzzy complex numbers and discuss their basic arithmetic properties of them. And also we consider an interval-valued fuzzy measure. In section 3, we consider fuzzy valued functions and fuzzy complex valued fuzzy measures. And also we define Choquet integrals with respect to a fuzzy complex valued fuzzy measure of fuzzy complex valued functions.

2. Fuzzy Complex Fuzzy Measures.

Definition 2.1 ([11]) Let $\tilde{a}, \tilde{b} \subseteq FN(\mathbb{R}^+)$. We define a ordered fuzzy numbers (\tilde{a}, \tilde{b}) as follows:

$$(\tilde{a}, \tilde{b}): \mathbb{C}^+ \rightarrow [0,1],$$

$$z = x + yi \mapsto (\tilde{a}, \tilde{b})(z) = \tilde{a}(x) \wedge \tilde{b}(y)$$
.

Then the mapping (\tilde{a},\tilde{b}) determines a fuzzy complex number, where \tilde{a} and \tilde{b} is called a real part and an imaginary part of (\tilde{a},\tilde{b}) , respectively. Let $C=(\tilde{a},\tilde{b})$, then $\tilde{a}=Re\ C$, $\tilde{b}=Im\ C$.

Let $\mathbb{C}^+ = \{x + iy | x, y \in \mathbb{R}^+\}$ and $FCN(\mathbb{C}^+)$ be the set of fuzzy complex numbers on \mathbb{C}^+ , writing

$$\tilde{c} = \tilde{a} + \tilde{b}i = (\tilde{a}, \tilde{b}), \ \tilde{a}, \tilde{b} \in FN(\mathbb{R}^+).$$

We note that if c=a+bi is a complex number, then it's membership function is

$$c(z) = \begin{cases} 1 & x = a, y = b \\ 0 & otherwise, \end{cases}$$

whenever $z=(x,y)\!\in\!\mathbb{C}^+.$ If $C_1,C_2\!\in\!FC\!N(\mathbb{C}^+)$ and we define

$$C_1 \times C_2 = (Re \ C_1 \times Re \ C_2, Im \ C_1 \times Im \ C_2)$$

for operation $*\in\{+,-,\bullet,\wedge,\vee\}$, then clearly we have C_1*C_2 belongs to $FCN(\mathbb{C}^+)$. Now we introduce some order relations and equality relation on $FCN(\mathbb{C}^+)$.

Definition 2.2 ([11]) Let $C_1, C_2 \in FCN(\mathbb{C}^+)$.

(1) $C_1 \le C_2$ if and only if

$$Re \ C_1 \leq Re \ C_2$$
, $Im \ C_1 \leq Im \ C_2$.

- (2) $C_1 < C_2$ if and only if $C_1 \le C_2$ and $Re \ C_1 < Re \ C_2$ or $Im \ C_1 < Im \ C_2$.
- (3) $C_1 = C_2$ if and only if

$$C_1 \leq C_2$$
, $C_2 \leq C_1$.

We will define the new metric D on $FCN(\mathbb{C}^+)$ as follows.

Definition 2.3 (1) If $C\!\in\!FCN(\mathbb{C}^+)$, then C_λ is closed rectangle region on \mathbb{C}^+ , for all $\lambda\!\in\!(0,1]$, defined as $C_\lambda=\{z\!\in\!\mathbb{C}^+\,|\,C(z)\geq\lambda\}$. Obviously, if $\tilde{a},\tilde{b}\in\!FN(\mathbb{R}^+)$, then $(\tilde{a},\tilde{b})_\lambda=(\tilde{a}_\lambda,\tilde{b}_\lambda)$ for all $\lambda\!\in\!(0,1]$.

(2) A mapping

$$D: FCN(\mathbb{C}^+) \times FCN(\mathbb{C}^+) \rightarrow [0, \infty]$$

is defined by

$$\begin{split} &D(C_1, C_2) \\ &= \max \left\{ \triangle \left(Re \, C_1, Re \, C_2 \right), \triangle \left(Im \, C_1, Im \, C_2 \right) \right\} \end{split}$$

where

$$\begin{array}{l} \triangle \left(\operatorname{Re} C_1, \operatorname{Re} C_2 \right) \\ = \vee_{\lambda \, \in \, (0,1]} d_H(\left(\operatorname{Re} C_1 \right)_{\lambda}, \left(\operatorname{Re} C_2 \right)_{\lambda}) \end{array}$$

and

$$\begin{array}{l} \triangle \left(\operatorname{Im} C_1,\operatorname{Im} C_2\right) \\ = \vee_{\lambda \in (0.1]} d_H \left(\left(\operatorname{Im} C_1\right)_{\lambda},\left(\operatorname{Im} C_2\right)_{\lambda}\right). \end{array}$$

It is clearly to see that $(FCN(\mathbb{C}^+), D)$ is a metric space. By using this metric, we define the concept of convergence of a sequence in the metric space $(FCN(\mathbb{C}^+), D)$.

Definition 2.4 Let $\{C_n\} \subset FCN(\mathbb{C}^+)$ be a sequence of fuzzy complex valued numbers and $C \in FCN(\mathbb{C}^+)$. The sequence $\{C_n\}$ converges to C, in symbol, $D-\lim_{n\to\infty} C_n = C$ if

$$\lim_{n \to \infty} D(C_n, C) = 0.$$

We also consider an interval-valued fuzzy measure as follows.

Definition 2.5 ([11]) Let (X,Ω) be a measurable space, a mapping

 $\overline{\mu} \colon \Omega \to I(\mathbb{R}^+)$ is called an interval-valued fuzzy measure if it is satisfying

- (i) $\overline{\mu}(\varnothing) = [0,0],$
- (ii) $\overline{\mu}(A) \leq \overline{\mu}(B)$, whenever
- $A,B \subseteq \Omega, A \subset B.$
- (iii) If $(A_n)\subset \Omega$ and $A_n\nearrow A$ or $A_n\searrow A$ implies $\overline{\mu}(A_n)\to \overline{\mu}(A)$.

We note that for any $A \in \Omega$, denote $\overline{\mu}(A) = [\mu^-(A), \mu^+(A)]$ or simply write as $\overline{\mu} = [\mu^-, \mu^+]$.

Proposition 2.6 ([11]) A mapping $\mu: \Omega \to I(\mathbb{R}^+)$ is an interval-valued fuzzy measure if and only if μ^- and μ^+ are fuzzy measure under Sugeno's sense.

3. Choquet Integrals of Fuzzy Complex Valued Functions

In this section, we define a fuzzy complex valued fuzzy measure and Choquet integral with respect to a fuzzy complex valued fuzzy measure of fuzzy complex valued functions. Let $\mathbb{C}^+ = \{x+yi \mid x,y \in \mathbb{R}^+\}$ and (\mathbb{C}^+,Ω) be a measurable space. We consider a fuzzy complex valued function as follows.

Definition 3.1 ([11]) If a mapping $\tilde{f} \colon \mathbb{C}^+ \to FCN(\mathbb{C}^+)$ is defined by

On Choquet Integrals with Respect to a Fuzzy Complex Valued Fuzzy Measure of Fuzzy Complex Valued
Functions

$$z = x + yi \rightarrow \tilde{f}(z) = (Re\tilde{f}, Im\tilde{f})(z)$$

$$\equiv Re\tilde{f}(x) \wedge Im\tilde{f}(y),$$

then \tilde{f} is called a fuzzy complex valued function on \mathbb{C}^+ . We note that $\operatorname{Re} \tilde{f}(x) {\in} \operatorname{FN}(\mathbb{R}^+)$, $\operatorname{Im} \tilde{f}(y) {\in} \operatorname{F}(\mathbb{R}^+)$. For any $\lambda {\in} (0,1]$, let

$$\begin{split} \widetilde{f}_{\lambda}(z) &= (\widetilde{f}(z))_{\lambda} = (Re\ \widetilde{f}_{\lambda}(z), Im\ \ \widetilde{f}_{\lambda}(z)), \\ (Re\ \widetilde{f})_{\lambda} &= Re\ \widetilde{f}_{\lambda} = (Re\ \widetilde{f}_{\lambda}^{-}, Re\ \widetilde{f}_{\lambda}^{+}), \text{ and} \\ (Im\ \widetilde{f})_{\lambda} &= Im\ \widetilde{f}_{\lambda} = (Im\ \widetilde{f}_{\lambda}^{-}, Im\ \widetilde{f}_{\lambda}^{+}). \end{split}$$

Theorem 3.2 ([11]) Let $\widetilde{f}_1, \widetilde{f}_2$ be fuzzy complex valued measurable functions on (\mathbb{C}^+, Ω) , then $\widetilde{f}_1 \pm \widetilde{f}_2$ and $\widetilde{f}_1 \cdot \widetilde{f}_2$ are fuzzy complex valued measurable functions.

Definition 3.3 ([11]) Let (\mathbb{C}^+,Ω) be a measurable space, a mapping $\tilde{\mu}\colon \Omega \to FCN(\mathbb{C}^+)$ is called a fuzzy complex valued fuzzy measure, if the following conditions are satisfied:

- (1) $\tilde{\mu}(\varnothing) = [\tilde{0}, \tilde{0}], \text{ where } \tilde{0} \in FCN(\mathbb{C}^+),$
- (2) $\tilde{\mu}(A) \leq \tilde{\mu}(B)$,

whenever $A,B \subseteq \Omega,A \subset B$, and

 $\begin{array}{llll} \text{(3)} & \text{if} & (A_n) \subset \varOmega & \text{and} & A_n \, \nearrow A & \text{or} & A_n \, \searrow A, & \text{then} \\ \tilde{\mu}(A_n) \! \to \! \tilde{\mu}(A) & (n \! \to \! \infty) & \text{in meaning of the metric } D, & \text{in symbol,} \end{array}$

$$D - \lim_{n \to \infty} \tilde{\mu}_n = \tilde{\mu}$$
.

We note that $(\mathbb{C}^+,\Omega,\mu)$ is called a fuzzy complex valued fuzzy measure space and denote that $\tilde{\mu}(A)=(\tilde{\mu}_R(A),\tilde{\mu}_I(A))$ or simply write as $\tilde{\mu}=(\tilde{\mu}_R,\tilde{\mu}_I)$ for any $A \in \Omega$. Now, we will define the Choquet integral with respect to a fuzzy complex fuzzy measure of a fuzzy complex valued function as follows. The idea of the following definition is similar to the idea of the generalized Lebesgue integral in Wang and Li [11].

Definition 3.4 Let $\tilde{\mu} = (\tilde{\mu}_R, \tilde{\mu}_I)$ be a fuzzy complex valued fuzzy measure and $\tilde{f} = (Re\tilde{f}, Im\tilde{f})$ a fuzzy complex valued measurable function.

(1) For any $A\in\Omega$, the Choquet integral with respect to $\tilde{\mu}$ of \tilde{f} is defined by

$$\begin{split} \left((C) \int_{A} & \tilde{f} \, d\tilde{\mu} \right)_{\lambda} \equiv \left((C) \int_{A} & \operatorname{Re} \, \tilde{f}_{\lambda} d(\tilde{\mu}_{R})_{\lambda}, \\ & (C) \int_{A} & \operatorname{Im} \, \tilde{f}_{\lambda} d(\tilde{\mu}_{I})_{\lambda} \right) \end{split}$$

for all $\lambda \in (0,1]$, where

$$(C)\int_{A}\!Re\,\tilde{f}_{\lambda}d(\tilde{\mu}_{R})_{\lambda} =$$

$$\left[(C)\int_A (Re\,\tilde{f}\,)_\lambda^- d(\tilde{\mu}_R)_\lambda^-,\ (C)\int_A (Re\,\tilde{f}\,)_\lambda^+ d(\tilde{\mu}_R)_\lambda^+\right]$$
 and

$$(\mathit{C})\int_{A}\!\!I\!\!m\,\tilde{f}_{\,\lambda}d(\tilde{\mu}_{\,I})_{\lambda}=$$

$$\left[(C)\int_A (\operatorname{Im} \tilde{f})_\lambda^- d(\tilde{\mu}_I)_\lambda^-, (C)\int_A (\operatorname{Im} \tilde{f})_\lambda^+ d(\tilde{\mu}_I)_\lambda^+\right].$$

- (2) If there exists $\tilde{u} \in FCN(\mathbb{C}^+)$ such that $(\tilde{u})_{\lambda} = \left((C) \int_{A} \tilde{f} \ d\tilde{\mu} \right)_{\lambda}$ for all $\lambda \in (0,1]$, then \tilde{f} is said
- to be Choquet integrable on A.
- (3) \tilde{f} is said to be Choquet integrably bounded if $Re\tilde{f}$ and $\tilde{I}m\tilde{f}$ are Choquet integrably bounded.

Instead of
$$(C)\int_{V} \tilde{f} d\tilde{\mu}$$
, we will write $(C)\int \tilde{f} d\tilde{\mu}$.

Remark 3.5 $Re\tilde{f}$ and $Im\tilde{f}$ are Choquet integrably bounded if and only if for all $\lambda \! \in \! (0,\!1]$, interval-valued measurable functions $(Re\tilde{f})_{\lambda}$ and $(Im\tilde{f})_{\lambda}$ are Choquet integrably bounded (see [5,6]). And we also see that

$$\begin{split} &(C)\int_{A}(Re\,\tilde{f}\,)_{\lambda}^{-}d(\tilde{\mu}_{R})_{\lambda}^{-},\ (C)\int_{A}(Re\,\tilde{f}\,)_{\lambda}^{+}d(\tilde{\mu}_{R})_{\lambda}^{+},\\ &(C)\int_{A}(Im\,\tilde{f}\,)_{\lambda}^{-}d(\tilde{\mu}_{I})_{\lambda}^{-}\ \ \text{and}\ \ (C)\int_{A}(Im\,\tilde{f}\,)_{\lambda}^{+}d(\tilde{\mu}_{I})_{\lambda}^{+} \end{split}$$

are finite, that is, they are well-defined (see [2-4]).

Lemma 3.6 ([6,9]) Let $\{[a_{\lambda},b_{\lambda}]|\lambda\in(0,1]\}$ be given a family of nonempty intervals in $I(\mathbb{R}^+)$. If (i) for all $0<\lambda_1\leq\lambda_2,\ [a_{\lambda_1},b_{\lambda_1}]\supset[a_{\lambda_2},b_{\lambda_2}]$ and (ii) for any non-increasing sequence $\{\lambda_k\}$ in (0,1] converging to λ , $[a_{\lambda},b_{\lambda}]=\bigcap_{k=1}^{\infty}[a_{\lambda_k},b_{\lambda_k}]$. Then there exists a unique fuzzy number $\tilde{u}\in FN(\mathbb{R}^+)$ such that the family $[a_{\lambda},b_{\lambda}]$ represents the λ -level sets of a fuzzy number $\tilde{u}\in FN(\mathbb{R}^+)$. Conversely, if $[a_{\lambda},b_{\lambda}]$ are the λ -level set of a fuzzy number $\tilde{u}\in FN(\mathbb{R}^+)$, then the conditions (i) and (ii) are satisfied.

By using the definition of a fuzzy complex valued fuzzy measure with condition (iii), we easily obtain the following lemma.

Lemma 3.7 Let $\{\lambda_k\}$ be a nonincreasing sequence in (0,1] converging to λ . If we put

$$\begin{split} g_{k,m}^R(\alpha) &= (\tilde{\mu}_R)_{\lambda_k}^- \Big(\big\{ x | (Re\tilde{f})_{\lambda_m}^-(x) > \alpha \big\} \Big), \\ h_{k,m}^R(\alpha) &= (\tilde{\mu}_R)_{\lambda_k}^+ \Big(\big\{ x | (Re\tilde{f})_{\lambda}^+(x) > \alpha \big\} \Big), \text{ and} \end{split}$$

International Journal of Fuzzy Logic and Intelligent Systems, vol. 10, no. 3, September 2010

$$\begin{split} g^I_{k,m}(\alpha) &= (\tilde{\mu}_I)^-_{\lambda_k} \Big(\Big\{ x | (\text{Im} \tilde{f})^-_{\lambda_m}(x) > \alpha \Big\} \Big), \\ h^I_{k,m}(\alpha) &= (\tilde{\mu}_I)^+_{\lambda_k} \Big(\Big\{ x | (\text{Im} \tilde{f})^+_{\lambda_m}(x) > \alpha \Big\} \Big), \text{ and} \\ g^R_{\lambda}(\alpha) &= (\tilde{\mu}_R)^-_{\lambda} \Big(\Big\{ x | (\text{Re} \tilde{f})^-_{\lambda}(x) > \alpha \Big\} \Big), \\ h^R_{\lambda}(\alpha) &= (\tilde{\mu}_I)^+_{\lambda} \Big(\Big\{ x | (\text{Re} \tilde{f})^+_{\lambda}(x) > \alpha \Big\} \Big), \text{ and} \\ g^I_{\lambda}(\alpha) &= (\tilde{\mu}_I)^-_{\lambda} \Big(\Big\{ x | (\text{Im} \tilde{f})^-_{\lambda}(x) > \alpha \Big\} \Big), \\ h^I_{\lambda}(\alpha) &= (\tilde{\mu}_I)^+_{\lambda} \Big(\Big\{ x | (\text{Im} \tilde{f})^+_{\lambda}(x) > \alpha \Big\} \Big), \end{split}$$

for all $\alpha \in \mathbb{R}^+$ and $k,m \in \mathbb{N}$, then we have $g_{k,m}^R(\alpha) \searrow g_{\lambda}^R(\alpha)$, $h_{k,m}^R(\alpha) \searrow h_{\lambda}^R(\alpha)$, $g_{k,m}^I(\alpha) \searrow g_{\lambda}^I(\alpha)$, and $h_{k,m}^I(\alpha) \searrow h_{\lambda}^I(\alpha)$.

Remark 3.8 (1) For all $0 < \lambda_1 \le \lambda_2$, we obtain

$$\begin{split} &(C) \int_{A} (Re\,\tilde{f})_{\lambda_{1}}^{-} d(\tilde{\mu}_{R})_{\lambda_{1}}^{-} \ \geq \ (C) \int_{A} (Re\,\tilde{f})_{\lambda_{2}}^{-} d(\tilde{\mu}_{R})_{\lambda_{2}}^{-}, \\ &(C) \int_{A} (Re\,\tilde{f})_{\lambda_{1}}^{+} d(\tilde{\mu}_{R})_{\lambda_{1}}^{+} \ \geq \ (C) \int_{A} (Re\,\tilde{f})_{\lambda_{2}}^{+} d(\tilde{\mu}_{R})_{\lambda_{2}}^{+}, \\ &(C) \int_{A} (Im\,\tilde{f})_{\lambda_{1}}^{-} d(\tilde{\mu}_{I})_{\lambda_{1}}^{-} \ \geq \ (C) \int_{A} (Im\,\tilde{f})_{\lambda_{2}}^{-} d(\tilde{\mu}_{I})_{\lambda_{2}}^{-}, \end{split}$$

and

$$(C) \int_{A} (Im \, \tilde{f} \,)_{\lambda_{1}}^{+} d(\tilde{\mu}_{I})_{\lambda_{1}}^{+} \, \geq \, (C) \int_{A} (Im \, \tilde{f} \,)_{\lambda_{2}}^{+} d(\tilde{\mu}_{I})_{\lambda_{2}}^{+}.$$

(2) If we take k=m, then we obtain the followings: For any nonincreasing sequence $\{\lambda_k\}$ in (0,1] conversing to λ ,

$$\begin{split} &(C)\int_{A}(Re\tilde{f})_{\lambda}^{-}d(\tilde{\mu}_{R})_{\lambda}^{-}\\ &=\bigcap_{k=1}^{\infty}\Bigl((C)\int_{A}(Re\tilde{f})_{\lambda_{k}}^{-}d(\tilde{\mu}_{R})_{\lambda_{k}}^{-}\Bigr),\\ &(C)\int_{A}(Re\tilde{f})_{\lambda}^{+}d(\tilde{\mu}_{R})_{\lambda_{k}}^{+}\\ &=\bigcap_{k=1}^{\infty}\Bigl((C)\int_{A}(Re\tilde{f})_{\lambda_{k}}^{+}d(\tilde{\mu}_{R})_{\lambda_{k}}^{+}\Bigr),\\ &(C)\int_{A}(Im\tilde{f})_{\lambda}^{-}d(\tilde{\mu}_{I})_{\lambda}^{-}\qquad\text{and}\\ &=\bigcap_{k=1}^{\infty}\Bigl((C)\int_{A}(Im\tilde{f})_{\lambda_{k}}^{-}d(\tilde{\mu}_{I})_{\lambda_{k}}^{-}\Bigr),\\ &(C)\int_{A}(Im\tilde{f})_{\lambda}^{+}d(\tilde{\mu}_{I})_{\lambda_{k}}^{+}\Bigr),\\ &=\bigcap_{k=1}^{\infty}\Bigl((C)\int_{A}(Im\tilde{f})_{\lambda_{k}}^{+}d(\tilde{\mu}_{I})_{\lambda_{k}}^{+}\Bigr). \end{split}$$

From Definition 3.4, Remark 3.5, Lemma 3.7 and Remark 3.8, we obtain the following theorem.

Theorem 3.9 Let $(\mathbb{C}^+, \Omega, \tilde{\mu})$ be fuzzy complex valued fuz-

zy measure space. If \tilde{f} is a fuzzy complex valued integrably bounded function, then we have

(i) for all $0 < \lambda_1 \le \lambda_2$,

$$\left((C) \int_A \tilde{f} \, d\tilde{\mu} \right)_{\lambda_1} \supset \left((C) \int_A \tilde{f} \, d\tilde{\mu} \right)_{\lambda_2},$$

(ii) for any nonincreasing sequence $\{\lambda_k\}$ in (0,1] conversing to λ ,

$$\left((\mathit{C})\int_{A}\tilde{f}\,d\tilde{\mu}\right)_{\lambda} = \bigcap_{k=1}^{\infty} \left((\mathit{C})\int_{A}\tilde{f}\,d\tilde{\mu}\right)_{\lambda_{k}}.$$

Remark 3.10 From Theorem 3.9 and Lemma 3.6, there exists a fuzzy complex number $\tilde{u} \in FCN(\mathbb{C}^+)$ such that

$$(\tilde{u})_{\lambda} = \left((C) \int_{A} \tilde{f} d\tilde{\mu} \right)_{\lambda}$$

for all λ \in (0,1]. That is, if a fuzzy complex valued function \tilde{f} is integrably bounded, then it is Choquet integrable.

References

- [1] J.J. Buckley, "Fuzzy complex numbers", Fuzzy Set and Systems vol.33, pp.333-345, 1989.
- [2] L. C. Jang, T. Kim, J. Jeon, "On set-valued Choquet integrals and convergence theorems", *Advan. Stud. Contemp. Math.* vol.6, pp.63-76, 2003.
- [3] L. C. Jang, "A study on applications of Choquet integral on interval -valued fuzzy sets", *Proceedings of* the Jangjeon Mathematical Society vol.10, pp.161-172, 2007.
- [4] L.C. Jang, "A note on the monotone interval-valued set function defined by the interval-valued Choquet integral", *Commun. Korean Math. Soc.* vol.22, no.2, pp.227-234, 2007.
- [5] L.C. Jang, "Structural characterizations of monotone interval-valued set functions defined by the interval-valued Choquet integral", Fuzzy Logic and Intelligent vol.18, no.3, pp.311-315, 2008.
- [6] L.C. Jang, T. Kim, J.D. Jeon, and W.J. Kim, "On Choquet integrals of measurable fuzzy number-valued functions", *Bull.KoreanMath.*Soc. vol. 41, no. 1, pp.95-107, 2004.
- [7] T. Murofush and M. Sugeno, "An interpretation of fuzzy measures and the Choquet integral as an integral with respect to a fuzzy measure", Fuzzy Sets and Systems vol. 29, pp. 201-227, 1989.
- [8] T. Murofush and M. Sugeno, "A theory of fuzzy measures: representations, the Choquet integral, and null sets", *J.Math. Anal. Appl.* vol.159, pp. 531-549, 1991
- [9] M.L. Puri and D.A. Ralescu, "Fuzzy random variable", J.Math. Anal. Appl. vol.114, pp. 409-422, 1986.
- [10] M. Sugeno, Y. Narukawa and T. Murofushi, "Choquet

On Choquet Integrals with Respect to a Fuzzy Complex Valued Fuzzy Measure of Fuzzy Complex Valued Functions

- integral and fuzzy measures on locally compact space", Fuzzy Sets and Systems vol.99,pp.205-211,1998.
- [11] Guijin Wang and Xiaoping Li, "Generalized Lebesgue integrals of fuzzy complex valued functions", *Fuzzy Sets and Systems* vol.127, pp.363-370, 2002.

Lee-Chae Jang received his MS and Ph.D at Kyungpook University under the direction of Han-Soo Kim. Since 1987 he has been a professor at Konkuk University. His research interest is analysis, fuzzy measure and Choquet integral, information theory, and p-adic analysis.

Department of Mathematics and Computer Science, Konkuk University, Chungju, 380-701, Korea.

E-mail: leechae.jang@kku.ac.kr

Hyun-Mee Kim received her Ph.D at Kyunghee University under the direction of Jong-Duck Jeon. Since 1995 she has been a parttime instructor at Kyunghee University and Konkuk University, etc. Her research interest is fuzzy theory and functional analysis.

E-mail: kagness@khu.ac.kr