• 제목/요약/키워드: interpolation function

검색결과 500건 처리시간 0.032초

영상보간법을 이용한 디지털 치근단 방사선영상의 개선에 관한 연구 (A Study on the Improvement of Digital Periapical Images using Image Interpolation Methods)

  • 송남규;고광준
    • 치과방사선
    • /
    • 제28권2호
    • /
    • pp.387-413
    • /
    • 1998
  • Image resampling is of particular interest in digital radiology. When resampling an image to a new set of coordinate, there appears blocking artifacts and image changes. To enhance image quality, interpolation algorithms have been used. Resampling is used to increase the number of points in an image to improve its appearance for display. The process of interpolation is fitting a continuous function to the discrete points in the digital image. The purpose of this study was to determine the effects of the seven interpolation functions when image resampling in digital periapical images. The images were obtained by Digora, CDR and scanning of Ektaspeed plus periapical radiograms on the dry skull and human subject. The subjects were exposed to intraoral X-ray machine at 60kVp and 70 kVp with exposure time varying between 0.01 and 0.50 second. To determine which interpolation method would provide the better image, seven functions were compared; (1) nearest neighbor (2) linear (3) non-linear (4) facet model (5) cubic convolution (6) cubic spline (7) gray segment expansion. And resampled images were compared in terms of SNR(Signal to Noise Ratio) and MTF(Modulation Transfer Function) coefficient value. The obtained results were as follows ; 1. The highest SNR value(75.96dB) was obtained with cubic convolution method and the lowest SNR value(72.44dB) was obtained with facet model method among seven interpolation methods. 2. There were significant differences of SNR values among CDR, Digora and film scan(P<0.05). 3. There were significant differences of SNR values between 60kVp and 70kVp in seven interpolation methods. There were significant differences of SNR values between facet model method and those of the other methods at 60kVp(P<0.05), but there were not significant differences of SNR values among seven interpolation methods at 70kVp(P>0.05). 4. There were significant differences of MTF coefficient values between linear interpolation method and the other six interpolation methods (P< 0.05). 5. The speed of computation time was the fastest with nearest -neighbor method and the slowest with non-linear method. 6. The better image was obtained with cubic convolution, cubic spline and gray segment method in ROC analysis. 7. The better sharpness of edge was obtained with gray segment expansion method among seven interpolation methods.

  • PDF

HIGH-DEGREE INTERPOLATION RULES GENERATED BY A LINEAR FUNCTIONAL

  • Kim, Kyung-Joong
    • 대한수학회논문집
    • /
    • 제22권3호
    • /
    • pp.475-485
    • /
    • 2007
  • We construct high-degree interpolation rules using not only pointwise values of a function but also of its derivatives up to the p-th order at equally spaced nodes on a closed and bounded interval of interest by introducing a linear functional from which we produce systems of linear equations. The linear systems will lead to a conclusion that the rules are uniquely determined for the nodes. An example is provided to compare the rules with the classical interpolating polynomials.

해석적 자동격자생성방법에서 보간방법에 따른 조절함수의 영향에 관한 연구 (Study on effect of control functions according to interpolations for elliptic grid generation method)

  • 채은미;사종엽
    • 한국전산유체공학회지
    • /
    • 제1권1호
    • /
    • pp.9-18
    • /
    • 1996
  • This study examines effect of various interpolations of interior control function for analytic methods such as Thomas-Middlecoff and Sorenson methods. Laplace interpolation is developed and compared among linear interpolation and exponential interpolation systematically.

  • PDF

해석적 자동격자생성방법에서 보간방법에 따른 조절함수의 영향에 관한 연구 (Study on effect of control functions according to interpolations for elliptic grid generation method)

  • 채은미;사종엽
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1995년도 추계 학술대회논문집
    • /
    • pp.104-109
    • /
    • 1995
  • This study examines effect of various interpolations of interior control function for analytic methods such as Thomas-Middlecoff and Sorenson methods. Laplace interpolation is developed and compared among linear interpolation and exponential interpolation systematically.

  • PDF

POLYNOMIAL-FITTING INTERPOLATION RULES GENERATED BY A LINEAR FUNCTIONAL

  • Kim Kyung-Joong
    • 대한수학회논문집
    • /
    • 제21권2호
    • /
    • pp.397-407
    • /
    • 2006
  • We construct polynomial-fitting interpolation rules to agree with a function f and its first derivative f' at equally spaced nodes on the interval of interest by introducing a linear functional with which we produce systems of linear equations. We also introduce a matrix whose determinant is not zero. Such a property makes it possible to solve the linear systems and then leads to a conclusion that the rules are uniquely determined for the nodes. An example is investigated to compare the rules with Hermite interpolating polynomials.

디지털 전산모사를 위한 방법론 비교분석 (Comparative analysis of methods for digital simulation)

  • 이덕균;박지은
    • 디지털융복합연구
    • /
    • 제13권9호
    • /
    • pp.209-218
    • /
    • 2015
  • 디지털 전산모사(computer simulation)는 모든 융합기술 분야에서 실험을 통한 이론 정립에 중요한 역할을 담당하고 있으며, 보간법은 격자위에서의 알고 있는 값을 이용하여 모르는 값을 알아내는 방법론이다. 그러므로 보간법의 선택은 디지털 전산모사에서 아주 중요한 문제이다. 본 논문에서는 디지털 전산모사 작업에서 사용되는 6종류의 보간법(Quartic-Lagrangian, Cubic Spline, Fourier, Hermite, PWENO, SL-WENO)의 성능을 비교, 평가한다. 디지털 전산모사의 선형 이류 방정식을 각 방법에 적용함으로써 장단점을 분석하였다. 각 방법론의 성능을 비교하기 위하여, 정확도 계산과 오차 함수를 도입한다. 정확도의 계산은 잘 알고 있는 $L^1-norm$ 계산, 분산 계산, 소멸 오차 그리고 전체적인 오차를 시행한다. 고차의 방법론이 효과적이기는 하나 진동 등 기타의 요인이 발생한다.

A Petrov-Galerkin Natural Element Method Securing the Numerical Integration Accuracy

  • Cho Jin-Rae;Lee Hong-Woo
    • Journal of Mechanical Science and Technology
    • /
    • 제20권1호
    • /
    • pp.94-109
    • /
    • 2006
  • An improved meshfree method called the Petrov-Galerkin natural element (PG-NE) method is introduced in order to secure the numerical integration accuracy. As in the Bubnov-Galerkin natural element (BG-NE) method, we use Laplace interpolation function for the trial basis function and Delaunay triangles to define a regular integration background mesh. But, unlike the BG-NE method, the test basis function is differently chosen, based on the Petrov-Galerkin concept, such that its support coincides exactly with a regular integration region in background mesh. Illustrative numerical experiments verify that the present method successfully prevents the numerical accuracy deterioration stemming from the numerical integration error.

Hermite 유동함수를 이용한 비압축성 유동계산 (INCOMPRESSIBLE FLOW COMPUTATIONS USING A HERMITE STREAM FUNCTION)

  • 김진환
    • 한국전산유체공학회지
    • /
    • 제12권1호
    • /
    • pp.35-42
    • /
    • 2007
  • This paper describes a recent development on the divergence free basis function based on a hermite stream function and verifies its validity by comparing results with those from a modified residual method known as one of stabilized finite element methods. It can be shown that a proper choice of degrees of freedom at a node with a proper arrangement of the hermite interpolation functions can yield solenoidal or divergent free interpolation functions for the velocities. The well-known cavity problem has been chosen for validity of the present algorithm. The comparisons from numerical results between the present and the modified residual showed the present method yields better results in both the velocity and the pressure within modest Reynolds numbers(Re = 1,000).

GENERALIZED SYMMETRICAL SIGMOID FUNCTION ACTIVATED NEURAL NETWORK MULTIVARIATE APPROXIMATION

  • ANASTASSIOU, GEORGE A.
    • Journal of Applied and Pure Mathematics
    • /
    • 제4권3_4호
    • /
    • pp.185-209
    • /
    • 2022
  • Here we exhibit multivariate quantitative approximations of Banach space valued continuous multivariate functions on a box or ℝN, N ∈ ℕ, by the multivariate normalized, quasi-interpolation, Kantorovich type and quadrature type neural network operators. We treat also the case of approximation by iterated operators of the last four types. These approximations are achieved by establishing multidimensional Jackson type inequalities involving the multivariate modulus of continuity of the engaged function or its high order Fréchet derivatives. Our multivariate operators are defined by using a multidimensional density function induced by the generalized symmetrical sigmoid function. The approximations are point-wise and uniform. The related feed-forward neural network is with one hidden layer.

PARAMETRIZED GUDERMANNIAN FUNCTION RELIED BANACH SPACE VALUED NEURAL NETWORK MULTIVARIATE APPROXIMATIONS

  • GEORGE A. ANASTASSIOU
    • Journal of Applied and Pure Mathematics
    • /
    • 제5권1_2호
    • /
    • pp.69-93
    • /
    • 2023
  • Here we give multivariate quantitative approximations of Banach space valued continuous multivariate functions on a box or ℝN, N ∈ ℕ, by the multivariate normalized, quasi-interpolation, Kantorovich type and quadrature type neural network operators. We treat also the case of approximation by iterated operators of the last four types. These approximations are derived by establishing multidimensional Jackson type inequalities involving the multivariate modulus of continuity of the engaged function or its high order Fréchet derivatives. Our multivariate operators are defined by using a multidimensional density function induced by a parametrized Gudermannian sigmoid function. The approximations are pointwise and uniform. The related feed-forward neural network is with one hidden layer.