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PARAMETRIZED GUDERMANNIAN FUNCTION RELIED

BANACH SPACE VALUED NEURAL NETWORK

MULTIVARIATE APPROXIMATIONS

GEORGE A. ANASTASSIOU

Abstract. Here we give multivariate quantitative approximations of Ba-

nach space valued continuous multivariate functions on a box or RN , N ∈
N, by the multivariate normalized, quasi-interpolation, Kantorovich type
and quadrature type neural network operators. We treat also the case

of approximation by iterated operators of the last four types. These ap-

proximations are derived by establishing multidimensional Jackson type in-
equalities involving the multivariate modulus of continuity of the engaged

function or its high order Fréchet derivatives. Our multivariate opera-

tors are defined by using a multidimensional density function induced by
a parametrized Gudermannian sigmoid function. The approximations are

pointwise and uniform. The related feed-forward neural network is with

one hidden layer.
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1. Introduction

The author in [2] and [3], see chapters 2-5, was the first to establish neural net-
work approximations to continuous functions with rates by very specifically de-
fined neural network operators of Cardaliagnet-Euvrard and ”Squashing” types,
by employing the modulus of continuity of the engaged function or its high order
derivative, and producing very tight Jackson type inequalities. He treats there
both the univariate and multivariate cases. The defining these operators ”bell-
shaped” and ”squashing” functions are assumed to be of compact support. Also
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in [3] he gives the Nth order asymptotic expansion for the error of weak approx-
imation of these two operators to a special natural class of smooth functions, see
chapters 4-5 there.

For this article the author is motivated by the article [15] of Z. Chen and F.
Cao, also by [4]-[12], [16], [17].

The author here performs multivariate parametrized Gudermannian sigmoid
function based neural network approximations to continuous functions over boxes
or over the whole RN , N ∈ N. Also he does iterated approximation. All conver-
gences here are with rates expressed via the multivariate modulus of continuity
of the involved function or its high order Fréchet derivative and given by very
tight multidimensional Jackson type inequalities.

The author here comes up with the ”right” precisely defined multivariate nor-
malized, quasi-interpolation neural network operators related to boxes or RN ,
as well as Kantorovich type and quadrature type related operators on RN . Our
boxes are not necessarily symmetric to the origin. In preparation to prove our
results we establish important properties of the basic multivariate density func-
tion induced by a parametrized Gudermannian sigmoid function and defining
our operators.

Feed-forward neural networks (FNNs) with one hidden layer, the only type
of networks we deal with in this article, are mathematically expressed as

Nn (x) =

n∑
j=0

cjσ (⟨aj · x⟩+ bj) , x ∈ Rs, s ∈ N,

where for 0 ≤ j ≤ n, bj ∈ R are the thresholds, aj ∈ Rs are the connection
weights, cj ∈ R are the coefficients, ⟨aj · x⟩ is the inner product of aj and x,
and σ is the activation function of the network. In many fundamental network
models, the activation function is the Gudermannian sigmoid function. About
neural networks read [18], [19], [20].

2. Background

Here we consider the Gudermannian function ([22]) gd (x) which is defined as
follows

gd (x) :=

∫ x

0

dt

cosh t
= 2arctan

(
tanh

(x
2

))
, ∀ x ∈ R. (1)

Let λ > 0, then

gd (λx) =

∫ λx

0

dt

cosh t
= 2arctan

(
tanh

(
λx

2

))
. (2)

We will use the following normalized and parametrized function

fλ (x) :=
2

π
gd (λx) =

4

π
arctan

(
tanh

(
λx

2

))
= (3)

2

π

∫ λx

0

dt

cosh t
=

4

π

∫ λx

0

dt

et + e−t
, x ∈ R
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We will prove that fλ is a generator sigmoid function with the general properties
as in [13]. When 0 < λ < 1, fλ is expected to outperform ReLu and Leaky ReLu
activation functions.

We notice that (
2

π
gd (x)

)′

=
2

π coshx
> 0,

and

f ′λ (x) =

(
2

π
gd (λx)

)′

=
2λ

π coshλx
> 0, ∀ x ∈ R. (4)

Hence fλ is strictly increasing on R.
Furthermore we have

f ′′λ (x) = −2λ2

π

sinhλx

(coshλx)
2 , ∀ x ∈ R. (5)

Notice that
f ′′λ (x) > 0 for x < 0, and

f ′′λ (x) < 0 for x > 0, and

f ′′λ (0) = 0.

Therefore fλ is stritly concave up for x < 0, and fλ is striclty concave down for
x > 0, and fλ (0) = 0, with (0, 0) the inflection point.

Let x → +∞, then tanh
(
λx
2

)
→ 1 and arctan

(
tanh

(
λx
2

))
→ π

4 . Let x →
−∞, then tanh

(
λx
2

)
→ −1 and arctan

(
tanh

(
λx
2

))
→ −π

4 .
Clearly, then fλ (+∞) = 1 and fλ (−∞) = −1, so that y = ±1 are horizontal

asymptotes for fλ.
Also it is fλ (x) ≥ 0 for x ≥ 0, and fλ (x) < 0 for x < 0. Obviously then

fλ : R → [−1, 1], with f ′′λ ∈ C (R) .
Notice that tanh (−x) = − tanhx and arctan (−x) = − arctanx, x ∈ R.
We have that

fλ (−x) =
4

π
arctan

(
tanh

(
−λx

2

))
=

4

π
arctan

(
− tanh

(
λx

2

))
=

− 4

π
arctan

(
tanh

(
λx

2

))
= −fλ (x) ,

proving
fλ (−x) = −fλ (x) , ∀ x ∈ R. (6)

So, indeed, fλ is a sigmoid function as in [13].
So, all the theory of [13] applies here for fλ, etc.
We consider the activation function

ψ (x) :=
1

4
(fλ (x+ 1)− fλ (x− 1)) , x ∈ R, (7)

As in [11], p. 285, and [13], we get that ψ (−x) = ψ (x) , thus ψ is an even
function. Since x + 1 > x − 1, then fλ (x+ 1) > fλ (x− 1), and ψ (x) > 0, all
x ∈ R.
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We see that

ψ (0) =
fλ (1)

2
=
gd (λ)

π
. (8)

Let x > 1, we have that

ψ′ (x) =
1

4
(f ′λ (x+ 1)− f ′λ (x− 1)) < 0,

by f ′λ being strictly decreasing over [0,+∞).
Let now 0 < x < 1, then 1 − x > 0 and 0 < 1 − x < 1 + x. It holds

f ′λ (x− 1) = f ′λ (1− x) > f ′λ (x+ 1), so that again ψ′ (x) < 0. Consequently ψ is
stritly decreasing on (0,+∞) .

Clearly, ψ is strictly increasing on (−∞, 0), and ψ′ (0) = 0.
See that

lim
x→+∞

ψ (x) =
1

4
(fλ (+∞)− fλ (+∞)) = 0, (9)

and

lim
x→−∞

ψ (x) =
1

4
(fλ (−∞)− fλ (−∞)) = 0. (10)

That is the x-axis is the horizontal asymptote on ψ.
Conclusion, ψ is a bell symmetric function with maximum

ψ (0) =
gd (λ)

π
.

We need

Theorem 2.1. (by [13]) We have that
∞∑

i=−∞
ψ (x− i) = 1, ∀ x ∈ R. (11)

Theorem 2.2. (by [13]) It holds∫ ∞

−∞
ψ (x) dx = 1. (12)

Thus ψ (x) is a density function on R.
We give

Theorem 2.3. (by [13]) Let 0 < α < 1, and n ∈ N with n1−α > 2. It holds
∞∑

 k = −∞
: |nx− k| ≥ n1−α

ψ (nx− k) <

(
1 − fλ

(
n1−α − 2

))
2

=

(
π − 2gd

(
λ
(
n1−α − 2

)))
2π

. (13)

Notice that

lim
n→+∞

(
π − 2gd

(
λ
(
n1−α − 2

)))
2π

= 0.

Denote by ⌊·⌋ the integral part of the number and by ⌈·⌉ the ceiling of the
number.

We further give



Parametrized Gudermannian function relied Banach space valued neural network 73

Theorem 2.4. (by [13]) Let x ∈ [a, b] ⊂ R and n ∈ N so that ⌈na⌉ ≤ ⌊nb⌋. It
holds

1∑⌊nb⌋
k=⌈na⌉ ψ (nx− k)

<
1

ψ (1)
=

4

fλ (2)
=

2π

gd (2λ)
, ∀ x ∈ [a, b] . (14)

Remark 2.1. (by [13]) We have that

lim
n→∞

⌊nb⌋∑
k=⌈na⌉

ψ (nx− k) ̸= 1, (15)

for at least some x ∈ [a, b] .
See also [11], p. 290, same reasoning.

Note 2.1. For large enough n we always obtain ⌈na⌉ ≤ ⌊nb⌋. Also a ≤ k
n ≤ b,

iff ⌈na⌉ ≤ k ≤ ⌊nb⌋. In general it holds (by (11))

⌊nb⌋∑
k=⌈na⌉

ψ (nx− k) ≤ 1. (16)

We introduce

Z (x1, ..., xN ) := Z (x) :=

N∏
i=1

ψ (xi) , x = (x1, ..., xN ) ∈ RN , N ∈ N. (17)

It has the properties:
(i) Z (x) > 0, ∀ x ∈ RN ,
(ii)

∞∑
k=−∞

Z (x− k) :=

∞∑
k1=−∞

∞∑
k2=−∞

...

∞∑
kN=−∞

Z (x1 − k1, ..., xN − kN ) = 1, (18)

where k := (k1, ..., kn) ∈ ZN , ∀ x ∈ RN ,
hence
(iii)

∞∑
k=−∞

Z (nx− k) = 1, (19)

∀ x ∈ RN ; n ∈ N,
and
(iv) ∫

RN

Z (x) dx = 1, (20)

that is Z is a multivariate density function.
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Here denote ∥x∥∞ := max {|x1| , ..., |xN |}, x ∈ RN , also set ∞ := (∞, ...,∞),
−∞ := (−∞, ...,−∞) upon the multivariate context, and

⌈na⌉ := (⌈na1⌉ , ..., ⌈naN⌉) ,

⌊nb⌋ := (⌊nb1⌋ , ..., ⌊nbN⌋) ,
(21)

where a := (a1, ..., aN ), b := (b1, ..., bN ) .
We obviously see that

⌊nb⌋∑
k=⌈na⌉

Z (nx− k) =

⌊nb⌋∑
k=⌈na⌉

(
N∏
i=1

ψ (nxi − ki)

)
=

⌊nb1⌋∑
k1=⌈na1⌉

...

⌊nbN⌋∑
kN=⌈naN⌉

(
N∏
i=1

ψ (nxi − ki)

)
=

N∏
i=1

 ⌊nbi⌋∑
ki=⌈nai⌉

ψ (nxi − ki)

 . (22)

For 0 < β < 1 and n ∈ N, a fixed x ∈ RN , we have that

⌊nb⌋∑
k=⌈na⌉

Z (nx− k) =

⌊nb⌋∑
 k = ⌈na⌉∥∥ k

n − x
∥∥
∞ ≤ 1

nβ

Z (nx− k) +

⌊nb⌋∑
 k = ⌈na⌉∥∥ k

n − x
∥∥
∞ > 1

nβ

Z (nx− k) . (23)

In the last two sums the counting is over disjoint vector sets of k’s, because the
condition

∥∥ k
n − x

∥∥
∞ > 1

nβ implies that there exists at least one
∣∣kr
n − xr

∣∣ > 1
nβ ,

where r ∈ {1, ..., N} .
(v) As in [11], pp. 288-289, we derive that

⌊nb⌋∑
 k = ⌈na⌉∥∥ k

n − x
∥∥
∞ > 1

nβ

Z (nx− k)
(13)
<

1− fλ
(
n1−β − 2

)
2

, 0 < β < 1, (24)

with n ∈ N : n1−β > 2, x ∈
∏N
i=1 [ai, bi] .

(vi) By Theorem 2.4 we get that

0 <
1∑⌊nb⌋

k=⌈na⌉ Z (nx− k)
<

1

(ψ (1))
N

=

(
2π

gd (2λ)

)N
, (25)

∀ x ∈
(∏N

i=1 [ai, bi]
)
, n ∈ N.

It is also clear that
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(vii)
∞∑

 k = −∞∥∥ k
n − x

∥∥
∞ > 1

nβ

Z (nx− k) <
1− fλ

(
n1−β − 2

)
2

, (26)

0 < β < 1, n ∈ N : n1−β > 2, x ∈ RN .
Furthermore it holds

lim
n→∞

⌊nb⌋∑
k=⌈na⌉

Z (nx− k) ̸= 1, (27)

for at least some x ∈
(∏N

i=1 [ai, bi]
)
.

Here
(
X, ∥·∥γ

)
is a Banach space.

Let f ∈ C
(∏N

i=1 [ai, bi] , X
)
, x = (x1, ..., xN ) ∈

∏N
i=1 [ai, bi] , n ∈ N such

that ⌈nai⌉ ≤ ⌊nbi⌋, i = 1, ..., N.
We introduce and define the following multivariate linear normalized neural

network operator (x := (x1, ..., xN ) ∈
(∏N

i=1 [ai, bi]
)
):

An (f, x1, ..., xN ) := An (f, x) :=

∑⌊nb⌋
k=⌈na⌉ f

(
k
n

)
Z (nx− k)∑⌊nb⌋

k=⌈na⌉ Z (nx− k)
=

∑⌊nb1⌋
k1=⌈na1⌉

∑⌊nb2⌋
k2=⌈na2⌉ ...

∑⌊nbN⌋
kN=⌈naN⌉ f

(
k1
n , ...,

kN
n

) (∏N
i=1 ψ (nxi − ki)

)
∏N
i=1

(∑⌊nbi⌋
ki=⌈nai⌉ ψ (nxi − ki)

) . (28)

For large enough n ∈ N we always obtain ⌈nai⌉ ≤ ⌊nbi⌋, i = 1, ..., N . Also
ai ≤ ki

n ≤ bi, iff ⌈nai⌉ ≤ ki ≤ ⌊nbi⌋, i = 1, ..., N .

When g ∈ C
(∏N

i=1 [ai, bi]
)
we define the companion operator

Ãn (g, x) :=

∑⌊nb⌋
k=⌈na⌉ g

(
k
n

)
Z (nx− k)∑⌊nb⌋

k=⌈na⌉ Z (nx− k)
. (29)

Clearly Ãn is a positive linear operator. We have that

Ãn (1, x) = 1, ∀ x ∈

(
N∏
i=1

[ai, bi]

)
.

Notice that An (f) ∈ C
(∏N

i=1 [ai, bi] , X
)
and Ãn (g) ∈ C

(∏N
i=1 [ai, bi]

)
.

Furthermore it holds

∥An (f, x)∥γ ≤
∑⌊nb⌋
k=⌈na⌉

∥∥f ( kn)∥∥γ Z (nx− k)∑⌊nb⌋
k=⌈na⌉ Z (nx− k)

= Ãn

(
∥f∥γ , x

)
, (30)
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∀ x ∈
∏N
i=1 [ai, bi] .

Clearly ∥f∥γ ∈ C
(∏N

i=1 [ai, bi]
)
.

So, we have that

∥An (f, x)∥γ ≤ Ãn

(
∥f∥γ , x

)
, (31)

∀ x ∈
∏N
i=1 [ai, bi], ∀ n ∈ N, ∀ f ∈ C

(∏N
i=1 [ai, bi] , X

)
.

Let c ∈ X and g ∈ C
(∏N

i=1 [ai, bi]
)
, then cg ∈ C

(∏N
i=1 [ai, bi] , X

)
.

Furthermore it holds

An (cg, x) = cÃn (g, x) , ∀ x ∈
N∏
i=1

[ai, bi] . (32)

Since Ãn (1) = 1, we get that

An (c) = c, ∀ c ∈ X. (33)

We call Ãn the companion operator of An.
For convinience we call

A∗
n (f, x) :=

⌊nb⌋∑
k=⌈na⌉

f

(
k

n

)
Z (nx− k) =

⌊nb1⌋∑
k1=⌈na1⌉

⌊nb2⌋∑
k2=⌈na2⌉

...

⌊nbN⌋∑
kN=⌈naN⌉

f

(
k1
n
, ...,

kN
n

)( N∏
i=1

ψ (nxi − ki)

)
, (34)

∀ x ∈
(∏N

i=1 [ai, bi]
)
.

That is

An (f, x) :=
A∗
n (f, x)∑⌊nb⌋

k=⌈na⌉ Z (nx− k)
, (35)

∀ x ∈
(∏N

i=1 [ai, bi]
)
, n ∈ N.

Hence

An (f, x)− f (x) =
A∗
n (f, x)− f (x)

(∑⌊nb⌋
k=⌈na⌉ Z (nx− k)

)
∑⌊nb⌋
k=⌈na⌉ Z (nx− k)

. (36)

Consequently we derive

∥An (f, x)− f (x)∥γ
(25)

≤
(

2π

gd (2λ)

)N ∥∥∥∥∥∥A∗
n (f, x)− f (x)

⌊nb⌋∑
k=⌈na⌉

Z (nx− k)

∥∥∥∥∥∥
γ

,

(37)

∀ x ∈
(∏N

i=1 [ai, bi]
)
.

We will estimate the right hand side of (37).
For the last and others we need
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Definition 2.5. ([11], p. 274) Let M be a convex and compact subset of(
RN , ∥·∥p

)
, p ∈ [1,∞], and

(
X, ∥·∥γ

)
be a Banach space. Let f ∈ C (M,X) .

We define the first modulus of continuity of f as

ω1 (f, δ) := sup
x, y ∈M :

∥x− y∥p ≤ δ

∥f (x)− f (y)∥γ , 0 < δ ≤ diam (M) . (38)

If δ > diam (M), then

ω1 (f, δ) = ω1 (f, diam (M)) . (39)

Notice ω1 (f, δ) is increasing in δ > 0. For f ∈ CB (M,X) (continuous and
bounded functions) ω1 (f, δ) is defined similarly.

Lemma 2.6. ([11], p. 274) We have ω1 (f, δ) → 0 as δ ↓ 0, iff f ∈ C (M,X),

where M is a convex compact subset of
(
RN , ∥·∥p

)
, p ∈ [1,∞] .

Clearly we have also: f ∈ CU
(
RN , X

)
(uniformly continuous functions),

iff ω1 (f, δ) → 0 as δ ↓ 0, where ω1 is defined similarly to (38). The space
CB
(
RN , X

)
denotes the continuous and bounded functions on RN .

When f ∈ CB
(
RN , X

)
we define,

Bn (f, x) := Bn (f, x1, ..., xN ) :=

∞∑
k=−∞

f

(
k

n

)
Z (nx− k) :=

∞∑
k1=−∞

∞∑
k2=−∞

...

∞∑
kN=−∞

f

(
k1
n
,
k2
n
, ...,

kN
n

)( N∏
i=1

ψ (nxi − ki)

)
, (40)

n ∈ N, ∀ x ∈ RN , N ∈ N, the multivariate quasi-interpolation neural network
operator.

Also for f ∈ CB
(
RN , X

)
we define the multivariate Kantorovich type neural

network operator

Cn (f, x) := Cn (f, x1, ..., xN ) :=

∞∑
k=−∞

(
nN
∫ k+1

n

k
n

f (t) dt

)
Z (nx− k) =

∞∑
k1=−∞

∞∑
k2=−∞

...

∞∑
kN=−∞

(
nN
∫ k1+1

n

k1
n

∫ k2+1
n

k2
n

...

∫ kN+1

n

kN
n

f (t1, ..., tN ) dt1...dtN

)

·

(
N∏
i=1

ψ (nxi − ki)

)
, (41)

n ∈ N, ∀ x ∈ RN .
Again for f ∈ CB

(
RN , X

)
, N ∈ N, we define the multivariate neural network

operator of quadrature type Dn (f, x), n ∈ N, as follows.



78 George A. Anastassiou

Let θ = (θ1, ..., θN ) ∈ NN , r = (r1, ..., rN ) ∈ ZN+ , wr = wr1,r2,...rN ≥ 0, such

that
θ∑
r=0

wr =
θ1∑
r1=0

θ2∑
r2=0

...
θN∑
rN=0

wr1,r2,...rN = 1; k ∈ ZN and

δnk (f) := δn,k1,k2,...,kN (f) :=

θ∑
r=0

wrf

(
k

n
+

r

nθ

)
=

θ1∑
r1=0

θ2∑
r2=0

...

θN∑
rN=0

wr1,r2,...rN f

(
k1
n

+
r1
nθ1

,
k2
n

+
r2
nθ2

, ...,
kN
n

+
rN
nθN

)
, (42)

where r
θ :=

(
r1
θ1
, r2θ2 , ...,

rN
θN

)
.

We set

Dn (f, x) := Dn (f, x1, ..., xN ) :=

∞∑
k=−∞

δnk (f)Z (nx− k) = (43)

∞∑
k1=−∞

∞∑
k2=−∞

...

∞∑
kN=−∞

δn,k1,k2,...,kN (f)

(
N∏
i=1

ψ (nxi − ki)

)
,

∀ x ∈ RN .
In this article we study the approximation properties of An, Bn, Cn, Dn neu-

ral network operators and as well of their iterates. That is, the quantitative
pointwise and uniform convergence of these operators to the unit operator I.

3. Multivariate general sigmoid Neural Network Approximations

Here we present several vectorial neural network approximations to Banach
space valued functions given with rates.

We give

Theorem 3.1. Let f ∈ C
(∏N

i=1 [ai, bi] , X
)
, 0 < β < 1, x ∈

(∏N
i=1 [ai, bi]

)
,

N, n ∈ N with n1−β > 2. Then
1)

∥An (f, x)− f (x)∥γ ≤(
2π

gd (2λ)

)N [
ω1

(
f,

1

nβ

)
+
(
1− fλ

(
n1−β − 2

)) ∥∥∥∥f∥γ∥∥∥∞
]
=: λ1 (n) , (44)

and
2) ∥∥∥∥An (f)− f∥γ

∥∥∥
∞

≤ λ1 (n) . (45)

We notice that lim
n→∞

An (f)
∥·∥γ
= f , pointwise and uniformly.

Above ω1 is with respect to p = ∞ and the speed of convergnece is
max

(
1
nβ ,
(
1− fλ

(
n1−β − 2

)))
.

Proof. As similar to [12] is omitted. □
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We make

Remark 3.1. ([11], pp. 263-266) Let
(
RN , ∥·∥p

)
, N ∈ N; where ∥·∥p is the Lp-

norm, 1 ≤ p ≤ ∞. RN is a Banach space, and
(
RN
)j

denotes the j-fold product

space RN×...×RN endowed with the max-norm ∥x∥(RN )j := max
1≤λ≤j

∥xλ∥p, where

x := (x1, ..., xj) ∈
(
RN
)j
.

Let
(
X, ∥·∥γ

)
be a general Banach space. Then the space Lj := Lj

((
RN
)j

;X
)

of all j-multilinear continuous maps g :
(
RN
)j → X, j = 1, ...,m, is a Banach

space with norm

∥g∥ := ∥g∥Lj
:= sup(

∥x∥
(RN )j

=1

) ∥g (x)∥γ = sup
∥g (x)∥γ

∥x1∥p ... ∥xj∥p
. (46)

LetM be a non-empty convex and compact subset of Rk and x0 ∈M is fixed.
Let O be an open subset of RN : M ⊂ O. Let f : O → X be a continuous

function, whose Fréchet derivatives (see [21]) f (j) : O → Lj = Lj

((
RN
)j

;X
)

exist and are continuous for 1 ≤ j ≤ m, m ∈ N.
Call (x− x0)

j
:= (x− x0, ..., x− x0) ∈

(
RN
)j
, x ∈M .

We will work with f |M .
Then, by Taylor’s formula ([14]), ([21], p. 124), we get

f (x) =

m∑
j=0

f (j) (x0) (x− x0)
j

j!
+Rm (x, x0) , all x ∈M, (47)

where the remainder is the Riemann integral

Rm (x, x0) :=

∫ 1

0

(1− u)
m−1

(m− 1)!

(
f (m) (x0 + u (x− x0))− f (m) (x0)

)
(x− x0)

m
du,

(48)

here we set f (0) (x0) (x− x0)
0
= f (x0) .

We consider

w := ω1

(
f (m), h

)
:= sup

x,y∈M :

∥x−y∥p≤h

∥∥∥f (m) (x)− f (m) (y)
∥∥∥ , (49)

h > 0.
We obtain∥∥∥(f (m) (x0 + u (x− x0))− f (m) (x0)

)
(x− x0)

m
∥∥∥
γ
≤∥∥∥f (m) (x0 + u (x− x0))− f (m) (x0)

∥∥∥ · ∥x− x0∥mp ≤

w ∥x− x0∥mp

⌈
u ∥x− x0∥p

h

⌉
, (50)
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by Lemma 7.1.1, [1], p. 208, where ⌈·⌉ is the ceiling.
Therefore for all x ∈M (see [1], pp. 121-122):

∥Rm (x, x0)∥γ ≤ w ∥x− x0∥mp
∫ 1

0

⌈
u ∥x− x0∥p

h

⌉
(1− u)

m−1

(m− 1)!
du

= wΦm

(
∥x− x0∥p

)
(51)

by a change of variable, where

Φm (t) :=

∫ |t|

0

⌈ s
h

⌉ (|t| − s)
m−1

(m− 1)!
ds =

1

m!

 ∞∑
j=0

(|t| − jh)
m
+

 , ∀ t ∈ R, (52)

is a (polynomial) spline function, see [1], p. 210-211.
Also from there we get

Φm (t) ≤

(
|t|m+1

(m+ 1)!h
+

|t|m

2m!
+

h |t|m−1

8 (m− 1)!

)
, ∀ t ∈ R, (53)

with equality true only at t = 0.
Therefore it holds

∥Rm (x, x0)∥γ ≤ w

(
∥x− x0∥m+1

p

(m+ 1)!h
+

∥x− x0∥mp
2m!

+
h ∥x− x0∥m−1

p

8 (m− 1)!

)
, ∀ x ∈M.

(54)
We have found that ∥∥∥∥∥∥f (x)−

m∑
j=0

f (j) (x0) (x− x0)
j

j!

∥∥∥∥∥∥
γ

≤

ω1

(
f (m), h

)(∥x− x0∥m+1
p

(m+ 1)!h
+

∥x− x0∥mp
2m!

+
h ∥x− x0∥m−1

p

8 (m− 1)!

)
<∞, (55)

∀ x, x0 ∈M.
Here 0 < ω1

(
f (m), h

)
<∞, by M being compact and f (m) being continuous

on M .
One can rewrite (55) as follows:∥∥∥∥∥∥f (·)−

m∑
j=0

f (j) (x0) (· − x0)
j

j!

∥∥∥∥∥∥
γ

≤

ω1

(
f (m), h

)(∥· − x0∥m+1
p

(m+ 1)!h
+

∥· − x0∥mp
2m!

+
h ∥· − x0∥m−1

p

8 (m− 1)!

)
, ∀ x0 ∈M, (56)

a pointwise functional inequality on M .
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Here (· − x0)
j
maps M into

(
RN
)j

and it is continuous, also f (j) (x0) maps(
RN
)j

into X and it is continuous. Hence their composition f (j) (x0) (· − x0)
j

is continuous from M into X.

Clearly f (·)−
∑m
j=0

f(j)(x0)(·−x0)
j

j! ∈ C (M,X),

hence
∥∥∥f (·)−∑m

j=0
f(j)(x0)(·−x0)

j

j!

∥∥∥
γ
∈ C (M).

Let
{
L̃N

}
N∈N

be a sequence of positive linear operators mapping C (M) into

C (M) .
Therefore we obtainL̃N

∥∥∥∥∥∥f (·)−
m∑
j=0

f (j) (x0) (· − x0)
j

j!

∥∥∥∥∥∥
γ

 (x0) ≤

ω1

(
f (m), h

)
(
L̃N

(
∥· − x0∥m+1

p

))
(x0)

(m+ 1)!h
+

(
L̃N

(
∥· − x0∥mp

))
(x0)

2m!

+
h
(
L̃N

(
∥· − x0∥m−1

p

))
(x0)

8 (m− 1)!

 , (57)

∀ N ∈ N, ∀ x0 ∈M .

Clearly (57) is valid when M =
N∏
i=1

[ai, bi] and L̃n = Ãn, see (29).

All the above is preparation for the following theorem, where we assume
Fréchet differentiability of functions.

This will be a direct application of Theorem 10.2, [11], pp. 268-270. The

operators An, Ãn fulfill its assumptions, see (28), (29), (31), (32) and (33).
We present the following high order approximation results.

Theorem 3.2. Let O open subset of
(
RN , ∥·∥p

)
, p ∈ [1,∞], such that

N∏
i=1

[ai, bi] ⊂

O ⊆ RN , and let
(
X, ∥·∥γ

)
be a general Banach space. Let m ∈ N and f ∈

Cm (O,X), the space of m-times continuously Fréchet differentiable functions

from O into X. We study the approximation of f | N∏
i=1

[ai,bi]
. Let x0 ∈

(
N∏
i=1

[ai, bi]

)
and r > 0. Then

1) ∥∥∥∥∥∥(An (f)) (x0)−
m∑
j=0

1

j!

(
An

(
f (j) (x0) (· − x0)

j
))

(x0)

∥∥∥∥∥∥
γ

≤
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ω1

(
f (m), r

((
Ãn

(
∥· − x0∥m+1

p

))
(x0)

) 1
m+1

)
rm!

((
Ãn

(
∥· − x0∥m+1

p

))
(x0)

)( m
m+1 )

[
1

(m+ 1)
+
r

2
+
mr2

8

]
, (58)

2) additionally if f (j) (x0) = 0, j = 1, ...,m, we have

∥(An (f)) (x0)− f (x0)∥γ ≤

ω1

(
f (m), r

((
Ãn

(
∥· − x0∥m+1

p

))
(x0)

) 1
m+1

)
rm!

((
Ãn

(
∥· − x0∥m+1

p

))
(x0)

)( m
m+1 )

(59)[
1

(m+ 1)
+
r

2
+
mr2

8

]
,

3)

∥(An (f)) (x0)− f (x0)∥γ ≤
m∑
j=1

1

j!

∥∥∥(An (f (j) (x0) (· − x0)
j
))

(x0)
∥∥∥
γ
+

ω1

(
f (m), r

((
Ãn

(
∥· − x0∥m+1

p

))
(x0)

) 1
m+1

)
rm!

((
Ãn

(
∥· − x0∥m+1

p

))
(x0)

)( m
m+1 )

(60)[
1

(m+ 1)
+
r

2
+
mr2

8

]
,

and
4) ∥∥∥∥An (f)− f∥γ

∥∥∥
∞,

N∏
i=1

[ai,bi]
≤

m∑
j=1

1

j!

∥∥∥∥∥∥∥(An (f (j) (x0) (· − x0)
j
))

(x0)
∥∥∥
γ

∥∥∥∥
∞,x0∈

N∏
i=1

[ai,bi]

+

ω1

f (m), r
∥∥∥(Ãn (∥· − x0∥m+1

p

))
(x0)

∥∥∥ 1
m+1

∞,x0∈
N∏

i=1
[ai,bi]


rm!∥∥∥(Ãn (∥· − x0∥m+1

p

))
(x0)

∥∥∥( m
m+1 )

∞,x0∈
N∏

i=1
[ai,bi]

(61)

[
1

(m+ 1)
+
r

2
+
mr2

8

]
.

We give
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Corollary 3.3. (to Theorem 3.2, case of m = 1) Then
1)

∥(An (f)) (x0)− f (x0)∥γ ≤
∥∥∥(An (f (1) (x0) (· − x0)

))
(x0)

∥∥∥
γ
+

1

2r
ω1

(
f (1), r

((
Ãn

(
∥· − x0∥2p

))
(x0)

) 1
2

)((
Ãn

(
∥· − x0∥2p

))
(x0)

) 1
2

(62)

[
1 + r +

r2

4

]
,

and
2) ∥∥∥∥(An (f))− f∥γ

∥∥∥
∞,

N∏
i=1

[ai,bi]
≤

∥∥∥∥∥∥∥(An (f (1) (x0) (· − x0)
))

(x0)
∥∥∥
γ

∥∥∥∥
∞,x0∈

N∏
i=1

[ai,bi]

+

1

2r
ω1

f (1), r ∥∥∥(Ãn (∥· − x0∥2p
))

(x0)
∥∥∥ 1

2

∞,x0∈
N∏

i=1
[ai,bi]


∥∥∥(Ãn (∥· − x0∥2p

))
(x0)

∥∥∥ 1
2

∞,x0∈
N∏

i=1
[ai,bi]

[
1 + r +

r2

4

]
, (63)

r > 0.

We make

Remark 3.2. We estimate (0 < α < 1, m,n ∈ N : n1−α > 2),

Ãn

(
∥· − x0∥m+1

∞

)
(x0) =

∑⌊nb⌋
k=⌈na⌉

∥∥ k
n − x0

∥∥m+1

∞ Z (nx0 − k)∑⌊nb⌋
k=⌈na⌉ Z (nx0 − k)

(25)
<

(
2π

gd (2λ)

)N ⌊nb⌋∑
k=⌈na⌉

∥∥∥∥kn − x0

∥∥∥∥m+1

∞
Z (nx0 − k) = (64)

(
2π

gd (2λ)

)N


⌊nb⌋∑
 k = ⌈na⌉

:
∥∥ k
n − x0

∥∥
∞ ≤ 1

nα

∥∥∥∥kn − x0

∥∥∥∥m+1

∞
Z (nx0 − k)+
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⌊nb⌋∑
 k = ⌈na⌉

:
∥∥ k
n − x0

∥∥
∞ > 1

nα

∥∥∥∥kn − x0

∥∥∥∥m+1

∞
Z (nx0 − k)


(26)

≤

(
2π

gd (2λ)

)N {
1

nα(m+1)
+

(
1− fλ

(
n1−α − 2

)
2

)
∥b− a∥m+1

∞

}
, (65)

(where b− a = (b1 − a1, ..., bN − aN )).

We have proved that (∀ x0 ∈
N∏
i=1

[ai, bi])

Ãn

(
∥· − x0∥m+1

∞

)
(x0) <(

2π

gd (2λ)

)N {
1

nα(m+1)
+

(
1− fλ

(
n1−α − 2

)
2

)
∥b− a∥m+1

∞

}
=: φ1 (n) (66)

(0 < α < 1, m,n ∈ N : n1−α > 2).
And, consequently it holds∥∥∥Ãn (∥· − x0∥m+1

∞

)
(x0)

∥∥∥
∞,x0∈

N∏
i=1

[ai,bi]
<

(
2π

gd (2λ)

)N
{

1

nα(m+1)
+

(
1 − fλ

(
n1−α − 2

)
2

)
∥b− a∥m+1

∞

}
= φ1 (n) → 0, as n → +∞.

(67)

So, we have that φ1 (n) → 0, as n → +∞. Thus, when p ∈ [1,∞], from
Theorem 3.2 we have the convergence to zero in the right hand sides of parts
(1), (2).

Next we estimate
∥∥∥(Ãn (f (j) (x0) (· − x0)

j
))

(x0)
∥∥∥
γ
.

We have that(
Ãn

(
f (j) (x0) (· − x0)

j
))

(x0) =

∑⌊nb⌋
k=⌈na⌉ f

(j) (x0)
(
k
n − x0

)j
Z (nx0 − k)∑⌊nb⌋

k=⌈na⌉ Z (nx0 − k)
.

(68)
When p = ∞, j = 1, ...,m, we obtain∥∥∥∥∥f (j) (x0)

(
k

n
− x0

)j∥∥∥∥∥
γ

≤
∥∥∥f (j) (x0)∥∥∥∥∥∥∥kn − x0

∥∥∥∥j
∞
. (69)

We further have that∥∥∥(Ãn (f (j) (x0) (· − x0)
j
))

(x0)
∥∥∥
γ

(25)
<
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(
2π

gd (2λ)

)N  ⌊nb⌋∑
k=⌈na⌉

∥∥∥∥∥f (j) (x0)
(
k

n
− x0

)j∥∥∥∥∥
γ

Z (nx0 − k)

 ≤

(
2π

gd (2λ)

)N  ⌊nb⌋∑
k=⌈na⌉

∥∥∥f (j) (x0)∥∥∥ ∥∥∥∥kn − x0

∥∥∥∥j
∞
Z (nx0 − k)

 = (70)

(
2π

gd (2λ)

)N ∥∥∥f (j) (x0)∥∥∥
 ⌊nb⌋∑
k=⌈na⌉

∥∥∥∥kn − x0

∥∥∥∥j
∞
Z (nx0 − k)

 =

(
2π

gd (2λ)

)N ∥∥∥f (j) (x0)∥∥∥


⌊nb⌋∑
 k = ⌈na⌉

:
∥∥ k
n − x0

∥∥
∞ ≤ 1

nα

∥∥∥∥kn − x0

∥∥∥∥j
∞
Z (nx0 − k)

+

⌊nb⌋∑
 k = ⌈na⌉

:
∥∥ k
n − x0

∥∥
∞ > 1

nα

∥∥∥∥kn − x0

∥∥∥∥j
∞
Z (nx0 − k)


(26)

≤ (71)

(
2π

gd (2λ)

)N ∥∥∥f(j)
(x0)

∥∥∥{ 1

nαj
+

(
1 − fλ

(
n1−α − 2

)
2

)
∥b− a∥j

∞

}
→ 0, as n → ∞.

That is ∥∥∥(Ãn (f (j) (x0) (· − x0)
j
))

(x0)
∥∥∥
γ
→ 0, as n→ ∞.

Therefore when p = ∞, for j = 1, ...,m, we have proved:∥∥∥(Ãn (f (j) (x0) (· − x0)
j
))

(x0)
∥∥∥
γ
<

(
2π

gd (2λ)

)N ∥∥∥f (j) (x0)∥∥∥{ 1

nαj
+

(
1− fλ

(
n1−α − 2

)
2

)
∥b− a∥j∞

}
≤ (72)

(
2π

gd (2λ)

)N ∥∥∥f (j)∥∥∥
∞

{
1

nαj
+

(
1− fλ

(
n1−α − 2

)
2

)
∥b− a∥j∞

}
=: φ2j (n) <∞,

and converges to zero, as n→ ∞.

We conclude:
In Theorem 3.2, the right hand sides of (60) and (61) converge to zero as

n→ ∞, for any p ∈ [1,∞].
Also in Corollary 3.3, the right hand sides of (62) and (63) converge to zero

as n→ ∞, for any p ∈ [1,∞] .
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Conclusion 3.1. We have proved that the left hand sides of (58), (59), (60),
(61) and (62), (63) converge to zero as n → ∞, for p ∈ [1,∞]. Consequently
An → I (unit operator) pointwise and uniformly, as n → ∞, where p ∈ [1,∞].
In the presence of initial conditions we achieve a higher speed of convergence,
see (59). Higher speed of convergence happens also to the left hand side of (58).

We give

Corollary 3.4. (to Theorem 3.2) Let O open subset of
(
RN , ∥·∥∞

)
, such that

N∏
i=1

[ai, bi] ⊂ O ⊆ RN , and let
(
X, ∥·∥γ

)
be a general Banach space. Let m ∈ N

and f ∈ Cm (O,X), the space of m-times continuously Fréchet differentiable
functions from O into X. We study the approximation of f | N∏

i=1
[ai,bi]

. Let x0 ∈(
N∏
i=1

[ai, bi]

)
and r > 0. Here φ1 (n) as in (66) and φ2j (n) as in (72), where

n ∈ N : n1−α > 2, 0 < α < 1, j = 1, ...,m. Then
1) ∥∥∥∥∥∥(An (f)) (x0)−

m∑
j=0

1

j!

(
An

(
f (j) (x0) (· − x0)

j
))

(x0)

∥∥∥∥∥∥
γ

≤

ω1

(
f (m), r (φ1 (n))

1
m+1

)
rm!

(φ1 (n))
( m

m+1 )
[

1

(m+ 1)
+
r

2
+
mr2

8

]
, (73)

2) additionally, if f (j) (x0) = 0, j = 1, ...,m, we have

∥(An (f)) (x0)− f (x0)∥γ ≤

ω1

(
f (m), r (φ1 (n))

1
m+1

)
rm!

(φ1 (n))
( m

m+1 )
[

1

(m+ 1)
+
r

2
+
mr2

8

]
, (74)

3) ∥∥∥∥An (f)− f∥γ
∥∥∥
∞,

N∏
i=1

[ai,bi]
≤

m∑
j=1

φ2j (n)

j!
+

ω1

(
f (m), r (φ1 (n))

1
m+1

)
rm!

(φ1 (n))
( m

m+1 ) (75)[
1

(m+ 1)
+
r

2
+
mr2

8

]
=: φ3 (n) → 0, as n→ ∞.

We continue with

Theorem 3.5. Let f ∈ CB
(
RN , X

)
, 0 < β < 1, x ∈ RN , N, n ∈ N with

n1−β > 2, ω1 is for p = ∞. Then
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1)

∥Bn (f, x)− f (x)∥γ ≤ ω1

(
f,

1

nβ

)
+
(
1− fλ

(
n1−β − 2

)) ∥∥∥∥f∥γ∥∥∥∞ =: λ2 (n) ,

(76)
2) ∥∥∥∥Bn (f)− f∥γ

∥∥∥
∞

≤ λ2 (n) . (77)

Given that f ∈
(
CU
(
RN , X

)
∩ CB

(
RN , X

))
, we obtain lim

n→∞
Bn (f) = f , uni-

formly. The speed of convergence above is max
(

1
nβ ,
(
1− fλ

(
n1−β − 2

)))
.

Proof. As similar to [12] is omitted. □

We give

Theorem 3.6. Let f ∈ CB
(
RN , X

)
, 0 < β < 1, x ∈ RN , N, n ∈ N with

n1−β > 2, ω1 is for p = ∞. Then
1)

∥Cn (f, x)− f (x)∥γ ≤ ω1

(
f,

1

n
+

1

nβ

)
+
(
1− fλ

(
n1−β − 2

)) ∥∥∥∥f∥γ∥∥∥∞ =: λ3 (n) ,

(78)
2) ∥∥∥∥Cn (f)− f∥γ

∥∥∥
∞

≤ λ3 (n) . (79)

Given that f ∈
(
CU
(
RN , X

)
∩ CB

(
RN , X

))
, we obtain lim

n→∞
Cn (f) = f , uni-

formly.

Proof. As similar to [12] is omitted. □

We also present

Theorem 3.7. Let f ∈ CB
(
RN , X

)
, 0 < β < 1, x ∈ RN , N, n ∈ N with

n1−β > 2, ω1 is for p = ∞. Then
1)

∥Dn (f, x)− f (x)∥γ ≤ ω1

(
f,

1

n
+

1

nβ

)
+
(
1− fλ

(
n1−β − 2

)) ∥∥∥∥f∥γ∥∥∥∞ = λ4 (n) ,

(80)
2) ∥∥∥∥Dn (f)− f∥γ

∥∥∥
∞

≤ λ4 (n) . (81)

Given that f ∈
(
CU
(
RN , X

)
∩ CB

(
RN , X

))
, we obtain lim

n→∞
Dn (f) = f ,

uniformly.

Proof. As similar to [12] is omitted. □

We make
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Definition 3.8. Let f ∈ CB
(
RN , X

)
, N ∈ N, where

(
X, ∥·∥γ

)
is a Banach

space. We define the general neural network operator

Fn (f, x) :=

∞∑
k=−∞

lnk (f)Z (nx− k) =


Bn (f, x) , if lnk (f) = f

(
k
n

)
,

Cn (f, x) , if lnk (f) = nN
∫ k+1

n
k
n

f (t) dt,

Dn (f, x) , if lnk (f) = δnk (f) .

(82)

Clearly lnk (f) is anX-valued bounded linear functional such that ∥lnk (f)∥γ ≤∥∥∥∥f∥γ∥∥∥∞ .

Hence Fn (f) is a bounded linear operator with
∥∥∥∥Fn (f)∥γ∥∥∥∞ ≤

∥∥∥∥f∥γ∥∥∥∞.

We need

Theorem 3.9. Let f ∈ CB
(
RN , X

)
, N ≥ 1. Then Fn (f) ∈ CB

(
RN , X

)
.

Proof. Very lengthy and as similar to [12] is omitted. □

Remark 3.3. By (28) it is obvious that
∥∥∥∥An (f)∥γ∥∥∥∞ ≤

∥∥∥∥f∥γ∥∥∥∞ < ∞, and

An (f) ∈ C

(
N∏
i=1

[ai, bi] , X

)
, given that f ∈ C

(
N∏
i=1

[ai, bi] , X

)
.

Call Ln any of the operators An, Bn, Cn, Dn.
Clearly then∥∥∥∥∥L2

n (f)
∥∥
γ

∥∥∥
∞

=
∥∥∥∥Ln (Ln (f))∥γ∥∥∥∞ ≤

∥∥∥∥Ln (f)∥γ∥∥∥∞ ≤
∥∥∥∥f∥γ∥∥∥∞ , (83)

etc.
Therefore we get ∥∥∥∥∥Lkn (f)∥∥γ∥∥∥∞ ≤

∥∥∥∥f∥γ∥∥∥∞ , ∀ k ∈ N, (84)

the contraction property.
Also we see that∥∥∥∥∥Lkn (f)∥∥γ∥∥∥∞ ≤

∥∥∥∥∥Lk−1
n (f)

∥∥
γ

∥∥∥
∞

≤ ... ≤
∥∥∥∥Ln (f)∥γ∥∥∥∞ ≤

∥∥∥∥f∥γ∥∥∥∞ . (85)

Here Lkn are bounded linear operators.

Notation 3.1. Here N ∈ N, 0 < β < 1. Denote by

cN :=

{ (
2π

gd(2λ)

)N
, if Ln = An,

1, if Ln = Bn, Cn, Dn,
(86)

φ (n) :=

{
1
nβ , if Ln = An, Bn,
1
n + 1

nβ , if Ln = Cn, Dn,
(87)
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Ω :=

 C

(
N∏
i=1

[ai, bi] , X

)
, if Ln = An,

CB
(
RN , X

)
, if Ln = Bn, Cn, Dn,

(88)

and

Y :=


N∏
i=1

[ai, bi] , if Ln = An,

RN , if Ln = Bn, Cn, Dn.
(89)

We give the condensed

Theorem 3.10. Let f ∈ Ω, 0 < β < 1, x ∈ Y ; n, N ∈ N with n1−β > 2. Then
(i)

∥Ln (f, x)− f (x)∥γ ≤ cN

[
ω1 (f, φ (n)) +

(
1− fλ

(
n1−β − 2

)) ∥∥∥∥f∥γ∥∥∥∞] =: τ (n) ,

(90)
where ω1 is for p = ∞,

and
(ii) ∥∥∥∥Ln (f)− f∥γ

∥∥∥
∞

≤ τ (n) → 0, as n→ ∞. (91)

For f uniformly continuous and in Ω we obtain

lim
n→∞

Ln (f) = f,

pointwise and uniformly.

Proof. By Theorems 3.1, 3.5, 3.6, 3.7. □

Next we do iterated neural network approximation (see also [9]).
We make

Remark 3.4. Let r ∈ N and Ln as above. We observe that

Lrnf − f =
(
Lrnf − Lr−1

n f
)
+
(
Lr−1
n f − Lr−2

n f
)
+(

Lr−2
n f − Lr−3

n f
)
+ ...+

(
L2
nf − Lnf

)
+ (Lnf − f) .

Then∥∥∥∥Lrnf − f∥γ
∥∥∥
∞

≤
∥∥∥∥∥Lrnf − Lr−1

n f
∥∥
γ

∥∥∥
∞

+
∥∥∥∥∥Lr−1

n f − Lr−2
n f

∥∥
γ

∥∥∥
∞

+∥∥∥∥∥Lr−2
n f − Lr−3

n f
∥∥
γ

∥∥∥
∞

+ ...+
∥∥∥∥∥L2

nf − Lnf
∥∥
γ

∥∥∥
∞

+
∥∥∥∥Lnf − f∥γ

∥∥∥
∞

=∥∥∥∥∥Lr−1
n (Lnf − f)

∥∥
γ

∥∥∥
∞

+
∥∥∥∥∥Lr−2

n (Lnf − f)
∥∥
γ

∥∥∥
∞

+
∥∥∥∥∥Lr−3

n (Lnf − f)
∥∥
γ

∥∥∥
∞

+...+
∥∥∥∥Ln (Lnf − f)∥γ

∥∥∥
∞

+
∥∥∥∥Lnf − f∥γ

∥∥∥
∞

≤ r
∥∥∥∥Lnf − f∥γ

∥∥∥
∞
. (92)

That is ∥∥∥∥Lrnf − f∥γ
∥∥∥
∞

≤ r
∥∥∥∥Lnf − f∥γ

∥∥∥
∞
. (93)

We give
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Theorem 3.11. All here as in Theorem 3.10 and r ∈ N, τ (n) as in (90). Then∥∥∥∥Lrnf − f∥γ
∥∥∥
∞

≤ rτ (n) . (94)

So that the speed of convergence to the unit operator of Lrn is not worse than of
Ln.

Proof. By (93) and (91). □

We make

Remark 3.5. Let m1, ...,mr ∈ N : m1 ≤ m2 ≤ ... ≤ mr, 0 < β < 1, f ∈ Ω.
Then φ (m1) ≥ φ (m2) ≥ ... ≥ φ (mr), φ as in (87).

Therefore

ω1 (f, φ (m1)) ≥ ω1 (f, φ (m2)) ≥ ... ≥ ω1 (f, φ (mr)) . (95)

Assume further that m1−β
i > 2, i = 1, ..., r. Then

1− fλ

(
m1−β

1 − 2
)

2
≥

1− fλ

(
m1−β

2 − 2
)

2
≥ ... ≥

1− fλ
(
m1−β
r − 2

)
2

. (96)

Let Lmi
as above, i = 1, ..., r, all of the same kind.

We write

Lmr

(
Lmr−1

(...Lm2
(Lm1

f))
)
− f =

Lmr

(
Lmr−1

(...Lm2
(Lm1

f))
)
− Lmr

(
Lmr−1

(...Lm2
f)
)
+

Lmr

(
Lmr−1 (...Lm2f)

)
− Lmr

(
Lmr−1 (...Lm3f)

)
+

Lmr

(
Lmr−1 (...Lm3f)

)
− Lmr

(
Lmr−1 (...Lm4f)

)
+ ...+ (97)

Lmr

(
Lmr−1

f
)
− Lmr

f + Lmr
f − f =

Lmr

(
Lmr−1

(...Lm2
)
)
(Lm1

f − f) + Lmr

(
Lmr−1

(...Lm3
)
)
(Lm2

f − f)+

Lmr

(
Lmr−1 (...Lm4)

)
(Lm3f − f) + ...+ Lmr

(
Lmr−1f − f

)
+ Lmrf − f.

Hence by the triangle inequality property of
∥∥∥∥·∥γ∥∥∥∞ we get∥∥∥∥∥Lmr

(
Lmr−1

(...Lm2
(Lm1

f))
)
− f

∥∥
γ

∥∥∥
∞

≤∥∥∥∥∥Lmr

(
Lmr−1 (...Lm2)

)
(Lm1f − f)

∥∥
γ

∥∥∥
∞

+∥∥∥∥∥Lmr

(
Lmr−1

(...Lm3
)
)
(Lm2

f − f)
∥∥
γ

∥∥∥
∞

+∥∥∥∥∥Lmr

(
Lmr−1 (...Lm4)

)
(Lm3f − f)

∥∥
γ

∥∥∥
∞

+ ...+∥∥∥∥∥Lmr

(
Lmr−1

f − f
)∥∥
γ

∥∥∥
∞

+
∥∥∥∥Lmr

f − f∥γ
∥∥∥
∞

(repeatedly applying (83))

≤
∥∥∥∥Lm1f − f∥γ

∥∥∥
∞

+
∥∥∥∥Lm2f − f∥γ

∥∥∥
∞

+
∥∥∥∥Lm3f − f∥γ

∥∥∥
∞

+ ...+
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∥∥∥∥∥Lmr−1f − f
∥∥
γ

∥∥∥
∞

+
∥∥∥∥Lmrf − f∥γ

∥∥∥
∞

=

r∑
i=1

∥∥∥∥Lmif − f∥γ
∥∥∥
∞
. (98)

That is, we proved∥∥∥∥∥Lmr

(
Lmr−1

(...Lm2
(Lm1

f))
)
− f

∥∥
γ

∥∥∥
∞

≤
r∑
i=1

∥∥∥∥Lmi
f − f∥γ

∥∥∥
∞
. (99)

We give

Theorem 3.12. Let f ∈ Ω; N, m1,m2, ...,mr ∈ N : m1 ≤ m2 ≤ ... ≤ mr,

0 < β < 1; m1−β
i > 2, i = 1, ..., r, x ∈ Y, and let (Lm1

, ..., Lmr
) as (Am1

, ..., Amr
)

or (Bm1 , ..., Bmr ) or (Cm1 , ..., Cmr ) or (Dm1 , ..., Dmr ), p = ∞. Then∥∥Lmr

(
Lmr−1 (...Lm2 (Lm1f))

)
(x)− f (x)

∥∥
γ
≤∥∥∥∥∥Lmr

(
Lmr−1

(...Lm2
(Lm1

f))
)
− f

∥∥
γ

∥∥∥
∞

≤

r∑
i=1

∥∥∥∥Lmif − f∥γ
∥∥∥
∞

≤

cN

r∑
i=1

[
ω1 (f, φ (mi)) +

(
1− fλ

(
m1−β
i − 2

))∥∥∥∥f∥γ∥∥∥∞] ≤
rcN

[
ω1 (f, φ (m1)) +

(
1− fλ

(
m1−β

1 − 2
))∥∥∥∥f∥γ∥∥∥∞] . (100)

Clearly, we notice that the speed of convergence to the unit operator of the mul-
tiply iterated operator is not worse than the speed of Lm1

.

Proof. Using (99), (95), (96) and (90), (91). □

We continue with

Theorem 3.13. Let all as in Corollary 3.4, and r ∈ N. Here φ3 (n) is as in
(75). Then ∥∥∥∥Arnf − f∥γ

∥∥∥
∞

≤ r
∥∥∥∥Anf − f∥γ

∥∥∥
∞

≤ rφ3 (n) . (101)

Proof. By (93) and (75). □

Application 3.1. A typical application of all of our results is when
(
X, ∥·∥γ

)
=

(C, |·|), where C are the complex numbers.
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