Browse > Article
http://dx.doi.org/10.14400/JDC.2015.13.9.209

Comparative analysis of methods for digital simulation  

Yi, Dokkyun (Daegu University)
Park, Jieun (Daegu University)
Publication Information
Journal of Digital Convergence / v.13, no.9, 2015 , pp. 209-218 More about this Journal
Abstract
Computer simulation plays an important role for a theoretical foundation in convergence technology and the interpolation is to know the unknown values from known values on grid points. Therefore it is an important problem to select an interpolation method for digital simulation. The aim of this paper is to compare analysis of interpolation methods for digital simulation. we test six different interpolation methods namely: Quartic-Lagrangian, Cubic Spline, Fourier, Hermit, PWENO and SL-WENO. Through digital simulation of a linear advection equation, we analyse pros and cons for each method. In order to compare performance, we introduce accuracy computing and Error functions. The accuracy computing is used well-known $L^1-norm$ and the Error functions are dispersion function, dissipation function and total error function. High-order methods well apply to computer simulation, unfortunately, side-effects (Oscillation) happen.
Keywords
Computer simulation; Backward semi-Lagrangian method; Interpolation; Convergence technology; WENO; PWENO; SL-WENO;
Citations & Related Records
연도 인용수 순위
  • Reference
1 N. Crouseilles, T. Respanud, E. Sonnendrucker, A Forward semi-Lagrangian method for the numerical solution of the Vlasov equation. Computer Physics Communications, Vol. 180, pp. 1730-1745, 2009.   DOI   ScienceOn
2 E. Sonnendrucker, J. Roche, P. Bertrand, A. Ghizzo, The semi-lagrangian method for the numerical resolution of the Vlasov equation. Journal of Computer Physics, Vol. 149, pp. 201-220, 1999.   DOI   ScienceOn
3 A. Staniforth, J. Cote, Semi-Lagrangian integration schemes for atmospheric models A review. Monthly Weather Review, Vol. 119, pp. 2206-2223, 1991.   DOI
4 M. Zerroukat, N. Wood, A. Staniforth, A monotonic and positive-definite filter for a Semi-Lagrangian Inherently Conserving and Efficient (SLICE) scheme. Q. J. R. Meteorol. Soc., Vol. 131, pp. 2923-2936, 2005.   DOI   ScienceOn
5 M. Zerroukat, N. Wood, A. Staniforth, The Parabolic Spline Method (PSM) for conservative transport problems. International Journal of Numerical Methods Fluids, Vol. 51, pp. 1297-1318, 2006.   DOI   ScienceOn
6 J. M. Qui, A. Christlieb, A Conservative high order semi-Lagrangian WENO method for the Vlasov equation. Journal of Computational Physics, Vol. 229, pp. 1130-1149, 2010.   DOI   ScienceOn
7 C. Z. Cheng, G. Knorr, The integration of the Vlasov equation in configuration space. Journal of Computational Physics, Vol. 22, pp. 330-351, 1976.   DOI   ScienceOn
8 J. A. Carrillo, F. Vecil, Nonoscillatory interpolation methods applied to Vlasov-Based models. SIAM Journal on Scientific Computing, Vol. 29, No. 3, pp. 1179-1206, 2007.   DOI   ScienceOn
9 S. G. Wallis, J. R. Manson, Accurate numerical simulation of advection using large time steps. International Journal for Numerical Methods in Fluids, Vol. 24, pp. 127-139, 1997.   DOI
10 G.-S. Jiang, C.-W. Shu, Efficient implementation of weighted ENO schemes. Journal of Computational Physics, Vol. 126, pp. 202-228, 1996.   DOI   ScienceOn
11 R. J. Leveque, High-resolution Conservative Algorithms for Advection in Incompressible Flow. SIAM Journal on Numerical Analysis, Vol. 33, No. 2, pp. 627-665, 1996.   DOI   ScienceOn
12 X.-D. Liu, S. Osher, T. Chan, Weighted essentially non-oscillatory schemes. Journal of Computational Physics, Vol. 115, pp. 200-212, 1994.   DOI   ScienceOn
13 C.-W. Shu, High order weighted essentially non-oscillatory schemes for convection dominated problems. SIAM Review, Vol. 51, pp. 82-126, 2009.   DOI   ScienceOn
14 C.-W. Shu, S. Osher, Efficient implementation of essentially non-oscillatory shock-capturing schemes. Journal of Computational Physics, Vol. 77, No. 2, pp. 439-471, 1988.   DOI   ScienceOn
15 L. L. Takacs, A two-step scheme for the advection equation with minimized dissipation and dispersion errors. Monthly Weather Review, Vol. 113, pp. 1050-1065, 1985.   DOI