Browse > Article

A Petrov-Galerkin Natural Element Method Securing the Numerical Integration Accuracy  

Cho Jin-Rae (School of Mechanical Engineering, Pusan National University)
Lee Hong-Woo (School of Mechanical Engineering, Pusan National University)
Publication Information
Journal of Mechanical Science and Technology / v.20, no.1, 2006 , pp. 94-109 More about this Journal
Abstract
An improved meshfree method called the Petrov-Galerkin natural element (PG-NE) method is introduced in order to secure the numerical integration accuracy. As in the Bubnov-Galerkin natural element (BG-NE) method, we use Laplace interpolation function for the trial basis function and Delaunay triangles to define a regular integration background mesh. But, unlike the BG-NE method, the test basis function is differently chosen, based on the Petrov-Galerkin concept, such that its support coincides exactly with a regular integration region in background mesh. Illustrative numerical experiments verify that the present method successfully prevents the numerical accuracy deterioration stemming from the numerical integration error.
Keywords
Petrov-Galerkin Natural Element Method; Laplace Interpolation Function; Constant Strain Basis Function; Numerical Integration Accuracy; Convergence Assessment;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 4  (Related Records In Web of Science)
Times Cited By SCOPUS : 3
연도 인용수 순위
1 Zhu, T. and Atluri, S. N., 1998, 'A Modified Collocation Method and a Penalty Formulation for Enforcing the Essential Boundary Conditions in the Element Free Galerkin Method,' Computational Mechanics, Vol. 21, pp. 211-222   DOI
2 Zienkiewicz, O. C. and Taylor, R. L., 1989, The Finite Element Method: Basic Formulation and Linear Problems, McGraw-Hill, Singapore
3 Sibson, R., 1980, 'A Vector Identity for Dirichlet Tessellation,' Mathematical Proc. the Cambridge Philosophical Society, Vol. 80, pp. 151-155
4 Strang, G. and Fix, G. J., 1973, An Analysis of the Finite Element Method, Prentice-Hall, New Jersey
5 Sukumar, N. and Moran, A. and Belytschko, T., 1998, 'The Natural Element Method in Solid Mechanics,' Int. J. Numer. Methods Engng., Vol. 43, pp.839-887   DOI   ScienceOn
6 Timoshenko, S. P. and Goodier, J. N., 1970, Theory of Elasticity, McGraw-Hill, New York
7 Okabe, A., Boots, B. and Sugihara, K., 1992, Spatial Tessellations: Concepts and Applications of Voronoi Diagrams, John Wiley & Sons, England
8 Piper, P., 1993, 'Properties of Local Coordinates based on Dirichlet Tessellations,' in Farin, G., Hagan, H. and Noltemeier, H. (eds.), Geometric Modelling, Vol. 8, pp.227-239
9 Sambridge, M, Braun, J. and McQueen, H, 1995, 'Geophysical Parameterization and Interpolant of Irregular Data Using Natural Neighbors,' Geophysical Journal International, Vol. 122, pp. 837-857   DOI   ScienceOn
10 Hiyoshi, H. and Sugihara, K., 1999, 'Two Generalization of an Interpolant based on Voronoi Diagrams,' Int. J. Shape Modeling, Vol. 5, pp. 219-231   DOI   ScienceOn
11 Liu, W. K., Jun, S. and Zhang, Y. F., 1995, 'Reproducing Kernel Particle Methods,' Int. J. Numer. Methods Fluids, Vol. 20, pp. 1081-1106   DOI   ScienceOn
12 Duarte, C. A. and Oden, J. T., 1996, 'An h-p Adaptive Method Using Clouds,' Comput. Methods Appl. Mech. Engrg., Vol. 139, pp.237-262   DOI   ScienceOn
13 Melenk, J. M. and Babuska, I., 1996, 'The Partition of Unity Finite Element Method: Basic Theory and Applications,' Comput. Methods Appl. Mech. Engrg., Vol. 139, pp. 289-314   DOI   ScienceOn
14 Nayroles, B., 1992, 'Generalizing the Finite Element Method: Diffuse Approximation and Diffuse Elements,' Computational Mechanics, Vol. 10, pp. 307-318   DOI
15 Dolbow, J. and Belytschko, T., 1999, 'Numerical Integration of the Galerkin Weak Form in Meshfree Methods,' Computational Mechanics, Vol. 23, pp.219-230   DOI
16 Farin, G., 1990, 'Surface over Dirichlet Tessellations,' Comput. Aided Geom. Des., Vol. 7, No. 1-4, pp. 281-292   DOI   ScienceOn
17 Green, P. J. and Sibson, R., 1978, 'Computing Dirichlet Tessellations in the Plane,' The Computer Journal, Vol. 21, pp. 168-173   DOI
18 Cho, J. R. and Oden, J. T., 1997, 'Locking and Boundary Layer in Hierarchical Models for Thin Elastic Structures,' Comput. Methods Appl. Mech. Engrg., Vol. 149, pp. 33-48   DOI   ScienceOn
19 Braun, J. and Sambridge, M., 1995, 'A Numerical Method for Solving Partial Differential Equations on Highly Irregular Evolving Grids,' Nature, Vol. 376, pp. 655-660   DOI   ScienceOn
20 Cho, J. R. and Lee, S. Y., 2002, 'Dynamic Analysis of Baffled Fuel-Storage Tanks Using the ALE Finite Element Method,' Int. J. Numer. Methods Fluids, Vol. 41, pp. 185-208   DOI   ScienceOn
21 Cueto, E., Calvo, B. and Doblare, M., 2002, 'Modelling Three-Dimensional Piece-wise Homogeneous Domains Using the Shape-based Natural Element Method,' Int. J. Numer. Methods Engng., Vol. 54, pp. 871-897   DOI   ScienceOn
22 Traversoni, L., 1994, 'Natural Neighbor Finite Elements,' Proc. Int. Conf. Hydraulic Engineering Software, Vol. 2, pp.291-297   DOI
23 Atluri, S. N. and Zhu, T., 1998, 'A New Meshless Local Petrov-Galerkin (MLPG) Approach in Computational Mechanics,' Computational Mechanics, Vol. 22, pp. 117-127   DOI
24 Belikov, V. V., Ivanov, V. D., Kontorovich, V. K., Korytnik, S. A. and Semenov, A. Yu, 1997, 'The Non-Sibsonian Interpolation: a New Method of Interpolation of the Values of a Function on an Arbitrary Set of Points,' Comput. Math. Math. Phys., Vol. 37, pp. 9-15
25 Belytschko, T., Lu, Y. Y. and Gu, L., 1994, 'Element-free Galerkin Methods,' Int. J. Numer. Methods Engng., Vol. 37, pp.229-256   DOI   ScienceOn
26 ANSYS, Inc., 1998, User's Manual (ver, 5.5.1), Houston, PA