• 제목/요약/키워드: internal force

검색결과 997건 처리시간 0.027초

비선형 연속축의 1/2차 분수조화진동 및 내부공진 (Subhamonic Resonances of order 1/2 of Continuous Rotor with Nonlinearity and Internal Resonances)

  • 남궁재관;이성우
    • 한국공작기계학회논문집
    • /
    • 제10권1호
    • /
    • pp.43-50
    • /
    • 2001
  • Subharmonic resonances of order 1/2 of a continuous rotating shaft with distributed mass are discussed. The restoring force of the shaft exhibits geometric stiffening nonlinearity due to the extension of the shaft center line. It is assumed that a distributed lateral force, such as the gravity, acts on the rotor. The possibility of the occurrence of subharmonic resonances, the shapes of resonance curves, and internal resonance phenomena are investigate.

  • PDF

다기능 재활운동을 위한 힘 센서가 없는 상지 재활 로봇의 힘 제어 (Sensorless Force Control with Observer for Multi-functional Upper Limb Rehabilitation Robot)

  • 최정현;오세훈;안진웅
    • 로봇학회논문지
    • /
    • 제12권3호
    • /
    • pp.356-364
    • /
    • 2017
  • This paper presents a force control based on the observer without taking any force or torque measurement from the robot which allows realizing more stable and robust human robot interaction for the developed multi-functional upper limb rehabilitation robot. The robot has four functional training modes which can be classified by the human robot interaction types: passive, active, assistive, and resistive mode. The proposed observer consists of internal disturbance observer and external force observer for distinctive performance evaluation. Since four training modes can be quantitatively identified as impedance variation, position-based impedance control with feedback and feedforward controller was applied to the assistive training mode. The results showed that the proposed sensorless observer estimated cleaner and more accurate force compared to the force sensor and the impedance controller embedded with the proposed observer completed the assistive training mode safely and properly.

다축 힘센서에서 힘감지 오차의 전파 (Force-Sensing Error Propagation in Multi-Axis Force Sensors)

  • 강철구
    • 대한기계학회논문집A
    • /
    • 제24권11호
    • /
    • pp.2688-2695
    • /
    • 2000
  • In multi-axis force sensor, compliance matrices representing structural behaviour of internal sensor bodies play an important role in decoupled sensing and accuracy, Recently, error propagation through compliance matrices has been studied via approximation approach. However the upper bound of measured force error has not been known. In this paper, error propagation in force sensing is analysed in a unified way when both strain measurement error and compliance matrix error exist, and the upper bound of the measured force error is derived exactly(not approximately). The analysis is examined through a numerical example.

Neural Network Compensation for Impedance Force Controlled Robot Manipulators

  • Jung, Seul
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제14권1호
    • /
    • pp.17-25
    • /
    • 2014
  • This paper presents the formulation of an impedance controller for regulating the contact force with the environment. To achieve an accurate force tracking control, uncertainties in both robot dynamics and the environment require to be addressed. As part of the framework of the proposed force tracking formulation, a neural network is introduced at the desired trajectory to compensate for all uncertainties in an on-line manner. Compensation at the input trajectory leads to a remarkable structural advantage in that no modifications of the internal force controllers are required. Minimizing the objective function of the training signal for a neural network satisfies the desired force tracking performance. A neural network actually compensates for uncertainties at the input trajectory level in an on-line fashion. Simulation results confirm the position and force tracking abilities of a robot manipulator.

유한요소기법을 이용한 비보존력이 작용하는 보-기둥 구조의 다양한 제변수 변화에 따른 동적 안정성 해석 (Dynamic Stability Analysis of Nonconservative Systems for Variable Parameters using FE Method)

  • 이준석;민병철;김문영
    • 한국전산구조공학회논문집
    • /
    • 제17권4호
    • /
    • pp.351-363
    • /
    • 2004
  • 비보존력을 받는 보-부재의 질량행렬, 탄성강도행릴, circulatory비보존력의 방향변화로 인한 load correction강도행력, 그리고 Winkler 및 Pasternak지반강도행렬을 고려한 운동방정식을 유도하고 divergence 및 flutter에 의한 안정성 해석을 수행한다. 또한 내적 및 외적 감쇠계수를 운동방정식에 포함시킴으로써 감쇠효과를 고려하고, 2차 고유치문제의 해법(quadratic eigen problem solution)을 적용하여 flutter에 미치는 영향을 조사한 후, Beck's column, Leipholz's column 및 Hauger's column에 대하여 비보존력의 방향파라미터 ${\alpha}$에 대한 임계하중의 영향, 내적 및 외적 감쇠계수 및 Winkler 및 Pasternak지반에 의한 임계하중의 영향을 각각 조사한다.

비선형 내력법을 이용한 단일 공기막의 형상 탐색 (Form Finding of a Single-layered Pneumatic Membrane Structures by Using Nonlinear Force Method)

  • 손수덕;하준홍;이승재
    • 한국공간구조학회논문집
    • /
    • 제21권4호
    • /
    • pp.49-56
    • /
    • 2021
  • This study aims to develop a form-finding algorithm for a single-layered pneumatic membrane. The initial shape of this pneumatic membrane, which is an air-supported type pneumatic membrane, is to find a state in which a given initial tension and internal pneumatic pressure are in equilibrium. The algorithm developed to satisfy these conditions is that a nonlinear optimization problem based on the force method considering the deformed shape is formulated, and, it's able to find the shape by iteratively repeating the process of obtaining a solution of the governing equations. An computational technique based on the Gauss-Newton method was used as a method for obtaining solutions of nonlinear equations. In order to verify the validity of the proposed form-finding algorithm, a single-curvature pneumatic membrane example and a double-curvature air pneumatic membrane example were adopted, respectively. In the results of these examples, it was possible to well observe the step-by-step convergence process of the shape of the pneumatic membrane, and it was also possible to confirm the change in shape according to the air pressure. In addition, the calculation results of the shape and internal force after deformation due to initial tension, air pressure, and self-weight were obtained.

Force-induced Unbinding Dynamics in a Multidimensional Free Energy Landscape

  • Hyeona, Chang-Bong
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권3호
    • /
    • pp.897-900
    • /
    • 2012
  • We examined theory for force-induced unbinding on a two-dimensional free energy surface where the internal dynamics of biomolecules is coupled with the rupture process under constant tension f. We show that only if the transition state ensemble is narrow and activation barrier is high, the f-dependent rupture rate in the 2D potential surface can faithfully be described using an effective 1D energy profile.

함수 연결 신경망과 외란 관측기를 이용한 힘 추정기 설계 및 로봇 매니퓰레이터에의 응용 (Design of a Force Estimator using an FLANN with a Disturbance Observer and Application to a Robot Manipulator)

  • 채원범;안현식;김도현
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 하계종합학술대회 논문집(5)
    • /
    • pp.27-30
    • /
    • 2000
  • In this paper, we propose a new approach to determination of environment forces acting on a rigid body. To estimate the output of disturbance observer due to internal torque, the disturbance observer output estimator using functional link neural network (FLANN) is designed. It is also shown by simulation results that the precise estimation of contact force is achieved for a 2-link SCARA robot performing position/force control.

  • PDF

A study on the action mechanism of internal pressures in straight-cone steel cooling tower under two-way coupling between wind and rain

  • Ke, S.T.;Du, L.Y.;Ge, Y.J.;Yang, Q.;Wang, H.;Tamura, Y.
    • Wind and Structures
    • /
    • 제27권1호
    • /
    • pp.11-27
    • /
    • 2018
  • The straight-cone steel cooling tower is a novel type of structure, which has a distinct aerodynamic distribution on the internal surface of the tower cylinder compared with conventional hyperbolic concrete cooling towers. Especially in the extreme weather conditions of strong wind and heavy rain, heavy rain also has a direct impact on aerodynamic force on the internal surface and changes the turbulence effect of pulsating wind, but existing studies mainly focus on the impact effect brought by wind-driven rain to structure surface. In addition, for the indirect air cooled cooling tower, different additional ventilation rate of shutters produces a considerable interference to air movement inside the tower and also to the action mechanism of loads. To solve the problem, a straight-cone steel cooling towerstanding 189 m high and currently being constructed is taken as the research object in this study. The algorithm for two-way coupling between wind and rain is adopted. Simulation of wind field and raindrops is performed with continuous phase and discrete phase models, respectively, under the general principles of computational fluid dynamics (CFD). Firstly, the rule of influence of 9 combinations of wind sped and rainfall intensity on flow field mechanism, the volume of wind-driven rain, additional action force of raindrops and equivalent internal pressure coefficient of the tower cylinder is analyzed. On this basis, the internal pressures of the cooling tower under the most unfavorable working condition are compared between four ventilation rates of shutters (0%, 15%, 30% and 100%). The results show that the 3D effect of equivalent internal pressure coefficient is the most significant when considering two-way coupling between wind and rain. Additional load imposed by raindrops on the internal surface of the tower accounts for an extremely small proportion of total wind load, the maximum being only 0.245%. This occurs under the combination of 20 m/s wind velocity and 200 mm/h rainfall intensity. Ventilation rate of shutters not only changes the air movement inside the tower, but also affects the accumulated amount and distribution of raindrops on the internal surface.