• Title/Summary/Keyword: intermediates

Search Result 669, Processing Time 0.026 seconds

Studies on the Synthesis and Surface Active Properties of N-carboxybetaine Derivatives Containing Amide Bond (Amide 결합(結合)을 가진 N-carboxybetaine류(類)의 합성(合成)과 그 계면활성(界面活性))

  • Lee, Dong-Woo;Lee, Hi-Jong;Kim, Yong-In
    • Journal of the Korean Applied Science and Technology
    • /
    • v.8 no.2
    • /
    • pp.115-122
    • /
    • 1991
  • Four novel amphoteric surfactants of N-(2-alkylamidoethyl)-N, N-dimethyl ammonioacetates were synthesized. The each reaction between four saturated fatty acids containing 10, 12, 14 and 16 carbon atoms and N, N-dimethylethylene diamine permitted to give the intermediate products, N-(2-alkylamidoethyl)-N, N-dimethylamines. Quaterinzation of these intermediates was permitted to form N-(2-alkylamidoethyl)-N, N-dimethyl, ammonioacetates, whose sturctures were identified by CC, TLC, elemental analysis, IR pectrophotometry and $^1$HNMR spectrometry. The products yielded from 48% to 58%. The isoelectric points were shown in the range of $4.30{\sim}6.64$. It showed a tendency to learn to the acidic site and its range was broadened as increase of the hydrophobic group length. Surface tensions of the aqueous solution in the $10^{-6}{\sim}10^{-1}$mol/l of amidobetaines were measured. and the critical micell concentration(cmc) were shown in the range of $8.37{\times}10^{-6}{\sim}8.96{\times}10^{-2}$mol/l, and ${\Gamma}_{cmc}$ were reduced to 32.3~38.2 dyne/cm. A linear relationship between log cmc and the number of carbon in the hydrophobic alkyl chain was presented by the formula of log cmc=2.38-0.5n, and the contribution-rate of n on the standard free energy change in micellization ${\partial}({\Delta}G^0$$_m)/{\partial}n$, was calulated as -0.5RT.

Activation of persulfate by UV and Fe2+ for the defluorination of perfluorooctanoic acid

  • Song, Zhou;Tang, Heqing;Wang, Nan;Wang, Xiaobo;Zhu, Lihua
    • Advances in environmental research
    • /
    • v.3 no.3
    • /
    • pp.185-197
    • /
    • 2014
  • Efficient defluorination of perfluorooctanoic acid (PFOA) was achieved by integrating UV irradiation and $Fe^{2+}$ activation of persulfate ($S_2O{_8}^{2-}$). It was found that the UV-$Fe^{2+}$, $Fe^{2+}-S_2O{_8}^{2-}$, and UV-$S_2O{_8}^{2-}$ processes caused defluorination efficiency of 6.4%, 1.6% and 23.2% for PFOA at pH 5.0 within 5 h, respectively, but a combined system of UV-$Fe^{2+}-S_2O{_8}^{2-}$ dramatically promoted the defluorination efficiency up to 63.3%. The beneficial synergistic behavior between $Fe^{2+}-S_2O{_8}^{2-}$ and UV-$S_2O{_8}^{2-}$ was demonstrated to be dependent on $Fe^{2+}$ dosage, initial $S_2O{_8}^{2-}$ concentration, and solution pH. The decomposition of PFOA resulted in generation of shorter-chain perfluorinated carboxylic acids (PFCAs), formic acid and fluoride ions. The generated PFCAs intermediates could be further defluorinated by adding supplementary $Fe^{2+}$ and, $S_2O{_8}^{2-}$ and re-adjusting solution pH in later reaction stage. The much enhanced PFOA defluorination in the UV-$Fe^{2+}-S_2O{_8}^{2-}$ system was attributed to the fact that the simultaneous employment of UV light and $Fe^{2+}$ not only greatly enhanced the activation of $S_2O{_8}^{2-}$ to form strong oxidizing sulfate radicals ($SO{_4}^{\cdot-}$), but also provided an additional decarboxylation pathway caused by electron transfer from PFOA to in situ generated $Fe^{3+}$.

The Effects of Long-Term, Low-Level Exposure to Monocyclic Aromatic Hydrocarbons on Worker's Insulin Resistance

  • Won, Yong-Lim;Ko, Yong;Heo, Kyung-Hwa;Ko, Kyung-Sun;Lee, Mi-Young;Kim, Ki-Woong
    • Safety and Health at Work
    • /
    • v.2 no.4
    • /
    • pp.365-374
    • /
    • 2011
  • Objectives: This study was designed to investigate whether long-term, low-level exposure to monocyclic aromatic hydrocarbons (MAHs) induced insulin resistance. Methods: The subjects were 110 male workers who were occupationally exposed to styrene, toluene, and xylene. One hundred and ten age-matched male workers who had never been occupationally exposed to organic solvents were selected as a control group. Cytokines, which have played a key role in the pathogenesis of insulin resistance, and oxidative stress indices were measured. Assessment of exposure to MAHs was performed by measuring their ambient levels and their urinary metabolites in exposed workers, and the resulting parameters between the exposed group and non-exposed control groups were compared. Results: There was no significant difference in general characteristics and anthropometric parameters between the two groups; however, total cholesterol, fasting glucose, fasting insulin, and homeostasis model assessment of insulin resistance levels were significantly higher in the exposed group. Phenylglyoxylic acid levels showed significant association with tumor necrosis factor-${\alpha}$, total oxidative status, and oxidative stress index via multiple linear regression analysis. Further, there was a negative correlation between methylhippuric acid levels and total anti-oxidative capacity, and there was a significant relationship between MAHs exposure and fasting glucose levels, as found by multiple logistic regression analysis (odds ratio = 3.95, 95% confidence interval = 1.074-14.530). Conclusion: This study indicated that MAHs increase fasting glucose level and insulin resistance. Furthermore, these results suggested that absorbing the organic solvent itself and active metabolic intermediates can increase oxidative stress and cytokine levels, resulting in the changes in glucose metabolism and the induction of insulin resistance.

A Study on Thermal Decomposition Characteristics of exo-tetrahydrodicyclopentadiene with Variation of Flow Rate (유량 변화에 따른 exo-tetrahydrodicyclopentadiene의 열분해특성에 관한 연구)

  • Kang, Saetbyeol
    • Korean Chemical Engineering Research
    • /
    • v.57 no.6
    • /
    • pp.763-767
    • /
    • 2019
  • In this study, thermal decomposition characteristics of exo-tetrahydrodicyclopentadiene (exo-THDCP) composed with a single compound were analyzed by using a flow reactor. The experiments were carried out at $500^{\circ}C$, 50 bar and the products of each flow rate condition were analyzed by using a GC/MS. As a result, it was confirmed that exo-THDCP was decomposed mainly into cyclic compounds and a part was isomerized by heat. As the flow rate was increased, the kinds and ratio of compounds produced through the decomposition and isomerization were decreased. Also, the conversion rate of exo-THDCP and the amount of heat absorbed during the decomposition were also decreased. The compounds rapidly produced by decomposition were mainly formed through the radical form of 1-cyclopentylcyclopentene (1-CPCP) which is one of the intermediates that can be formed from exo-THDCP because it has the lowest activation energy of 42 kcal/mol.

A Study on the Synthesis of CH4 from CO2 of Biogas Using 40 wt% Ni-Mg Catalyst: Characteristic Comparison of Commercial Catalyst and 40 wt% Ni Catalyt (40 wt% Ni 촉매에서 바이오가스 중 CO2로부터 메탄제조에 관한 연구: Commercial Catalyst와의 특성 비교분석)

  • HAN, DANBEE;BAEK, YOUNGSOON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.5
    • /
    • pp.388-400
    • /
    • 2021
  • Power to gas (P2G) is one of the energy storage technologies that can increase the storage period and storage capacity compared to the existing battery type. One of P2G technology produces hydrogen by decomposing water from renewable energy (electricity) and the other produces CH4 by reacting hydrogen with CO2. This study is an experimental study to produce CH4 by reacting CO2 of biogas with hydrogen using a 40 wt% Ni-Mg-Al catalyst and a commercial catalyst. Catalyst characteristics were analyzed through H2-TPR, XRD, and XPS instruments of 40% Ni catalyst and commercial catalyst. The effect on the CO2 conversion rate and CH4 selectivity was analyzed, and the activities of a 40% Ni catalyst and a commercial catalyst were compared. As a result of experiment, In the case of a 40 wt% catalyst, the maximum CO2 conversion rate showed 77% at the reaction temperature of 400℃. Meanwhile, the commercial catalyst showed a maximum CO2 conversion rate of 60% at 450℃. When 50% of CO was added to the CO2 methanation reaction, the CO2 conversion rate was increased by about 5%. This is considered to be due to the atmosphere in which the CO reaction can occur without the process of converting to CH4 after forming carbon and CO as intermediates in terms of the CO2 mechanism on the catalyst surface.

Cytochrome P450 and the glycosyltransferase genes are necessary for product release from epipyrone polyketide synthase in Epicoccum nigrum

  • Choi, Eun Ha;Park, Si-Hyung;Kwon, Hyung-Jin
    • Journal of Applied Biological Chemistry
    • /
    • v.64 no.3
    • /
    • pp.225-236
    • /
    • 2021
  • The epipyrone (EPN) biosynthetic gene cluster of Epicoccum nigrum is composed of epnC, epnB, and epnA, which encode cytochrome P450 oxidase, glycosyltransferase, and highly reducing polyketide synthase, respectively. Gene inactivation mutants for epnA, epnB, and epnC were previously generated, and it was found that all of them were incapable of producing EPN and any of its related compounds. It was also reported that epnB inactivation abolished epnA transcription, generating ΔepnAB. This study shows that the introduction of native epnC readily restored EPN production in ΔepnC, suggesting that epnC is essential for polyketide release from EpnA and implies that EpnC works during the polyketide chain assembly of EpnA. Introduction of epnC promoter-epnA restored EPN production in ΔepnA. The ΔepnB genotype was prepared by introducing the epnA expression vector into ΔepnAB, and it was found that the resulting recombinant strain did not produce any EPN-related compounds. A canonical epnB inactivation strain was also generated by deleting its 5'-end. At the deletion point, an Aspergllus nidulans gpdA promoter was inserted to ensure the transcription of epnA, which is located downstream of epnB. Examination of the metabolite profile of the resulting ΔepnB mutant via LC-mass spectrometry verified that no EPN-related compound was produced in this strain. This substantiates that C-glycosylation by EpnB is a prerequisite for the release of EpnA-tethered product. In conclusion, it is proposed that cytochrome P450 oxidase and glycosyltransferase work in concert with polyketide synthase to generate EPN without the occurrence of any free intermediates.

Controlled Synthesis of FeSe2 Nanoflakes Toward Advanced Sodium Storage Behavior Integrated with Ether-Based Electrolyte

  • Chen, Yalan;Zhang, Jingtong;Liu, Haijun;Wang, Zhaojie
    • Nano
    • /
    • v.13 no.12
    • /
    • pp.1850141.1-1850141.11
    • /
    • 2018
  • Sodium ion batteries based on the more sodium source reserve than that of lithium have been designed as promising alternatives to lithium ion batteries. However, several problems including unsatisfied specific capacity and serious cyclic stability must be solved before the reality. One of the effective approaches to solve the abovementioned problems is to search for suitable anode materials. In this work, we designed and prepared $FeSe_2$ nanoflakes via a simple hydrothermal method which can be adjusted in composition by Fe precursor. As a potential anode for sodium storage, the optimized $FeSe_2$ electrode was further evaluated in different electrolytes of $NaClO_4$ in propylene carbonate/fluoroethylene carbonate and $NaCF_3SO_3$ in diethylene glycol dimethyl ether. The capacity was about $470mAh\;g^{-1}$ and $535mAh\;g^{-1}$ at $0.5A\;g^{-1}$, respectively, in the voltage between 0.5 V and 2.9 V in the cycle of stabilization phase. Superior performance both in capacity and in stability was obtained in ether-based electrolyte, which affords the property without plugging the intermediates of transition metal dichalcogenides during charge/discharge processes.

Comparison of TiO2 and ZnO catalysts for heterogenous photocatalytic removal of vancomycin B

  • Lofrano, Giusy;Ozkal, Can Burak;Carotenuto, Maurizio;Meric, Sureyya
    • Advances in environmental research
    • /
    • v.7 no.3
    • /
    • pp.213-223
    • /
    • 2018
  • Continuous input into the aquatic ecosystem and persistent structures have created concern of antibiotics, primarily due to the potential for the development of antimicrobial resistance. Degradation kinetics and mineralization of vancomycin B (VAN-B) by photocatalysis using $TiO_2$ and ZnO nanoparticles was monitored at natural pH conditions. Photocatalysis (PC) efficiency was followed by means of UV absorbance, total organic carbon (TOC), and HPLC results to better monitor degradation of VAN-B itself. Experiments were run for two initial VAN-B concentrations ($20-50mgL^{-1}$) and using two catalysts $TiO_2$ and ZnO at different concentrations (0.1 and $0.5gL^{-1}$) in a multi-lamp batch reactor system (200 mL water volume). Furthermore, a set of toxicity tests with Daphnia magna was performed to evaluate the potential toxicity of oxidation by-products of VAN-B. Formation of intermediates such as chlorides and nitrates were monitored. A rapid VAN-B degradation was observed in ZnO-PC system (85% to 70% at 10 min), while total mineralization was observed to be relatively slower than $TiO_2-PC$ system (59% to 73% at 90 min). Treatment efficiency and mechanism of degradation directly affected the rate of transformation and by-products formation that gave rise to toxicity in the treated samples.

Biotransformation of Reactive Red 141 by Paenibacillus terrigena KKW2-005 and Examination of Product Toxicity

  • Sompark, Chalermwoot;Singkhonrat, Jirada;Sakkayawong, Niramol
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.7
    • /
    • pp.967-977
    • /
    • 2021
  • A total of 37 bacterial isolates were obtained from dye-contaminated soil samples at a textile processing factory in Nakhon Ratchasima Province, Thailand, and the potential of the isolates to decolorize and biotransform azo dye Reactive Red 141 (RR141) was investigated. The most potent bacterium was identified as Paenibacillus terrigena KKW2-005, which showed the ability to decolorize 96.45% of RR141 (50 mg/l) within 20 h under static conditions at pH 8.0 and a broad temperature range of 30-40℃. The biotransformation products were analyzed by using UV-Vis spectrophotometry and Fourier-transform infrared spectroscopy. Gas chromatography-mass spectroscopy analysis revealed four metabolites generated from the reductive biodegradation, namely sodium 3-diazenylnaphthalene-1,5-disulfonate (I), sodium naphthalene-2-sufonate (II), 4-chloro-1,3,5-triazin-2-amine (III) and N1-(1,3,5-triazin-2-yl) benzene-1,4-diamine (IV). Decolorization intermediates reduced phytotoxicity as compared with the untreated dye. However, they had phytotoxicity when compared with control, probably due to naphthalene and triazine derivatives. Moreover, genotoxicity testing by high annealing temperature-random amplified polymorphic DNA technique exhibited different DNA polymorphism bands in seedlings exposed to the metabolites. They compared to the bands found in seedlings subjected to the untreated dye or distilled water. The data from this study provide evidence that the biodegradation of Reactive Red 141 by P. terrigena KKW2-005 was genotoxic to the DNA seedlings.

Fe0/C-bentonite alginate beads and oyster shell fixed-bed column combined process to continuously remove N-acetyl-p-aminophenol in persulfate system

  • Wang, Bing-huang;Zhang, Qian;Honga, Jun-ming
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.67
    • /
    • pp.301-311
    • /
    • 2018
  • In this study, the ion-gelation method was applied to fabricate novel Fe-carbon-bentonite-alginate beads ($Fe^0$/C-BABs). $Fe^0$/C-BABs could effectively control Fe release during persulfate (PS) activation in N-acetyl-p-aminophenol (APAP) oxidation. A novel two-stage approach that combined $Fe^0$/C-BABs and an oyster-shell-filled bed (OSFB) column was developed to address the low pH and high Fe concentration of the effluent of the traditional PS process. The application of the $Fe^0$/C-BABs and OSFB column regulated pH levels and Fe release during the advanced oxidation of APAP. The characteristics of $Fe^0$/C-BABs were also investigated through scanning electron microscopy, energy dispersive spectrometry, and Fourier transform infrared spectroscopy. The long-term operation performance of $Fe^0$/C-BABs in a continuous fixed-bed reactor under simultaneous PS and APAP feeding was also evaluated. The effects of initial PS concentration, pH, fixed-bed weight, in-flow rate, and dissolved oxygen (DO) were investigated. Under selected conditions, 86.3% efficiency was achieved during the first stage of APAP degradation (effluent pH of 3.05, Fe contents: $106.25mgL^{-1}$). Water quality improved after the effluent was passed through the OSFB column (effluent pH of 6.32, Fe contents: $21.43mgL^{-1}$). Moreover, this study analyzed the free radicals and intermediates produced during APAP degradation to identify the possible routes of APAP degradation.