• Title/Summary/Keyword: interleukin-10 gene

Search Result 306, Processing Time 0.023 seconds

Role of stearyl-coenzyme A desaturase 1 in mediating the effects of palmitic acid on endoplasmic reticulum stress, inflammation, and apoptosis in goose primary hepatocytes

  • Tang, Bincheng;Qiu, Jiamin;Hu, Shenqiang;Li, Liang;Wang, Jiwen
    • Animal Bioscience
    • /
    • v.34 no.7
    • /
    • pp.1210-1220
    • /
    • 2021
  • Objective: Unlike mammals, goose fatty liver shows a strong tolerance to fatty acids without obvious injury. Stearyl-coenzyme A desaturase 1 (SCD1) serves crucial role in desaturation of saturated fatty acids (SAFs), but its role in the SAFs tolerance of goose hepatocytes has not been reported. This study was conducted to explore the role of SCD1 in regulating palmitic acid (PA) tolerance of goose primary hepatocytes. Methods: 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide was examined to reflect the effect of PA on hepatocytes viability, and quantitative polymerase chain reaction was used to detect the mRNA levels of several genes related to endoplasmic reticulum (ER) stress, inflammation, and apoptosis, and the role of SCD1 in PA tolerance of goose hepatocytes was explored using RNA interfere. Results: Our results indicated that goose hepatocytes exhibited a higher tolerant capacity to PA than human hepatic cell line (LO2 cells). In goose primary hepatocytes, the mRNA levels of fatty acid desaturation-related genes (SCD1 and fatty acid desaturase 2) and fatty acid elongate enzyme-related gene (elongase of very long chain fatty acids 6) were significantly upregulated with 0.6 mM PA treatment. However, in LO2 cells, expression of ER stress-related genes (x box-binding protein, binding immunoglobulin protein, and activating transcription factor 6), inflammatory response-related genes (interleukin-6 [IL-6], interleukin-1β [IL-1β], and interferon-γ) and apoptosis-related genes (bcl-2-associated X protein, b-cell lymphoma 2, Caspase-3, and Caspase-9) was significantly enhanced with 0.6 mM PA treatment. Additionally, small interfering RNA (siRNA) mediated downregulation of SCD1 significantly reduced the PA tolerance of goose primary hepatocytes under the treatment of 0.6 mM PA; meanwhile, the mRNA levels of inflammatory-related genes (IL-6 and IL-1β) and several key genes involved in the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT), forkhead box O1 (FoxO1), mammalian target of rapamycin and AMPK pathways (AKT1, AKT2, FoxO1, and sirtuin 1), as well as the protein expression of cytochrome C and the apoptosis rate were upregulated. Conclusion: In conclusion, our data suggested that SCD1 was involved in enhancing the PA tolerance of goose primary hepatocytes by regulating inflammation- and apoptosis-related genes expression.

Anti-inflammatory effect of Seungmagalgeun-tang extract in human mast cells (Human mast cell에서 승마갈근탕(升麻葛根湯)의 항염증 효과에 대한 연구)

  • Keum, Joon-Ho;Seo, Yun-Soo;Kang, Ok-Hwa;Choi, Jang-Gi;Kwon, Dong-Yeul
    • The Korea Journal of Herbology
    • /
    • v.28 no.5
    • /
    • pp.7-11
    • /
    • 2013
  • Objectives : Seungmagalgeun-tang (SMGGT) is traditional medicine widely used for inflammatory disease and flu. But SMGGT exhibits potent anti-inflammatory activity with an unknown mechanism. To elucidate the molecular mechanisms of SMGGT water extract on pharmacological and biochemical actions in inflammation, we examined the effect of SMGGT on pro-inflammatory mediators in Phorbol-12-myristate-13-acetate (PMA)+A23187-stimulated mast cells. Methods : In the present study, pro-inflammatory cytokine production was determined by performing enzyme-linked immunosorbent assay (ELISA), reverse transcription polymerase chain reaction (RT-PCR), and western blot analysis to measure the activation of MAPKs. Cells were treated with SMGGT 1 h prior to the addition of 50 nM of PMA and $1{\mu}M$ of A23187. Cell viability was measured by MTS assay. The investigation focused on whether SMGGT inhibited the expressions of interleukin-6 (IL-6), interleukin-8 (IL-8) and mitogen-activated protein kinases (MAPKs) in PMA+A23187-stimulated mast cells. Results : SMGGT has no cytotoxicity at examined concentration (100, 250, and $500{\mu}g/ml$). Also, gene expression of IL-6 and IL-8 in HMC-1 cells stimulated by PMA+A23187 was down regulated by SMGGT. Furthermore, SMGGT suppressed the PMA+A23187-induced phosphorylation of extracellular signal-regulated kinase (ERK) and c-jun N-terminal Kinase(JNK). But, SMGGT could not regulate phosphorylation of p38 MAPK. Conclusions : These results suggest that SMGGT has inhibitory effects on PMA+A23187-induced IL-6 and IL-8 production. These inhibitory effects occur through blockades on the phosphorylation of ERK and JNK.

Effects of dietary supplementation of lipid-coated zinc oxide on intestinal mucosal morphology and expression of the genes associated with growth and immune function in weanling pigs

  • Song, Young Min;Kim, Myeong Hyeon;Kim, Ha Na;Jang, Insurk;Han, Jeong Hee;Fontamillas, Giselle Ann;Lee, Chul Young;Park, Byung-Chul
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.3
    • /
    • pp.403-409
    • /
    • 2018
  • Objective: The present study was conducted to investigate the effects of a lipid-coated zinc oxide (ZnO) supplement Shield Zn (SZ) at the sub-pharmacological concentration on intestinal morphology and gene expression in weanling pigs, with an aim to gain insights into the mechanism of actions for SZ. Methods: Forty 22-day-old weanling pigs were fed a nursery diet supplemented with 100 or 2,500 mg Zn/kg with uncoated ZnO (negative control [NC] or positive control [PC], respectively), 100, 200, or 400 mg Zn/kg with SZ for 14 days and their intestinal tissues were taken for histological and molecular biological examinations. The villus height (VH) and crypt depth (CD) of the intestinal mucosa were measured microscopically following preparation of the tissue specimen; expression of the genes associated with growth and immune function was determined using the real-time quantitative polymerase chain reaction. Results: There was no difference in daily gain, gain:feed, and diarrhea score between the SZ group and either of NC and PC. The VH and VH:CD ratio were less for the SZ group vs NC in the jejunum and duodenum, respectively (p<0.05). The jejunal mucosal mRNA levels of insulin-like growth factor (IGF-I) and interleukin (IL)-10 regressed and tended to regress (p = 0.053) on the SZ concentration with a positive coefficient, respectively, whereas the IL-6 mRNA level regressed on the SZ concentration with a negative coefficient. The mRNA levels of IGF-I, zonula occludens protein-1, tumor necrosis $factor-{\alpha}$, IL-6, and IL-10 did not differ between the SZ group and either of NC and PC; the occludin and transforming growth $factor-{\beta}1$ mRNA levels were lower for the SZ group than for PC. Conclusion: The present results are interpreted to suggest that dietary ZnO provided by SZ may play a role in intestinal mucosal growth and immune function by modulating the expression of IGF-I, IL-6, and IL-10 genes.

Role of Oxygen Free Radical in the Expression of Interleukin-8 and Interleukin-$1{\beta}$ Gene in Mononuclear Phagocytic Cells (내독소에 의한 말초혈액 단핵구의 IL-8 및 IL-$1{\beta}$ 유전자 발현에서 산소기 역할에 관한 연구)

  • Kang, Min-Jong;Kim, Jae-Yeol;Park, Jae-Seok;Lee, Seung-Joon;Yoo, Chul-Gyu;Kim, Young-Whan;Han, Sung-Koo;Shim, Young-Soo
    • Tuberculosis and Respiratory Diseases
    • /
    • v.42 no.6
    • /
    • pp.862-870
    • /
    • 1995
  • Background: Oxygen free radicals have generally been considered as cytotoxic agents. On the other hand, recent results suggest that small nontoxic amounts of these radicals may act a role in intracellular signal transduction pathway and many efforts to reveal the role of these radicals as secondary messengers have been made. It is evident that the oxygen radicals are released by various cell types in response to extracellular stimuli including LPS, TNF, IL-1 and phorbol esters, all of which translocate the transcription factor $NF{\kappa}B$ from cytoplasm to nucleus by releasing an inhibitory protein subunit, $I{\kappa}B$. Activation of $NF{\kappa}B$ is mimicked by exposure to mild oxidant stress, and inhibited by agents that remove oxygen radicals. It means the cytoplasmic form of the inducible tanscription factor $NF{\kappa}B$ might provide a physiologically important target for oxygen radicals. At the same time, it is well known that LPS induces the release of oxygen radicals in neutrophil with the activation of $NF{\kappa}B$. From above facts, we can assume the expression of IL-8 and IL-$1{\beta}$ gene by LPS stimulation may occur through the activation of $NF{\kappa}B$, which is mediated through the release of $I{\kappa}B$ by increasing amounts of oxygen radicals. But definitive evidence is lacking about the role of oxygen free radicals in the expression of IL-8 and IL-$1{\beta}$ gene in mononuclear phagocytic cells. We conducted a study to determine whether oxygen radicals act a role in the expression of IL-8 and IL-$1{\beta}$ gene in mononuclear phagocytic cells. Method: Human peripheral blood monocytes were isolated from healthy volunteers. Time and dose relationship of $H_2O_2$-induced IL-8 and IL-$1{\beta}$ mRNA expression was observed by Northern blot analysis. To evaluate the role of oxygen radicals in the expression of IL-8 and IL-$1{\beta}$ mRNA by LPS stimulation, pretreatment of various antioxiants including PDTC, TMTU, NAC, ME, Desferrioxamine were done and Northern blot analysis for IL-8 and IL-$1{\beta}$ mRNA was performed. Results: In PBMC, dose and time dependent expression of IL-8 and IL-$1{\beta}$ mRNA by exogenous $H_2O_2$ was not observed. But various antioxidants suppressed the expression of LPS-induced IL-8 and IL-$1{\beta}$ mRNA expression of PBMC and the suppressive activity was most prominant when the pretreatment was done with TMTU. Conclusion: Oxygen free radical may have some role in the expression of IL-8 and IL-$1{\beta}$ mRNA of PBMC but that radical might not be $H_2O_2$.

  • PDF

Microarray Analysis of CD/cytokine Gene Expression in Human Mast Cell treated with Bee Venom (봉독약침액(蜂毒藥鍼液)이 비만세포주의 CD/cytokine 유전자(遺傳子) 발현(發現)에 미치는 영향(影響))

  • Lee, Woong-kyung;Kang, Sung-keel;Koh, Hyung-kyun
    • Journal of Acupuncture Research
    • /
    • v.20 no.5
    • /
    • pp.50-62
    • /
    • 2003
  • Objective: Bee Venom(BV) has been used for various kinds of inflammatory or painful conditions in Oriental Medicine clinics, and there publishes reports on its therapeutic effects and the probable mechanism of those therapeutic effects, where CDs and cytokines plays important role. This study investigated the influences of bee venom on the expressions of CDs and cytokines of HMC cell line Methods: In this study we analysed the expression profile of HMC cell line treated with BV of 10-2ug/ml in relation to that of HMC cell line treated with vehicle by way of CD/cytokine microarray hybridization with 342 genes on it. Results: There were no upregulated genes by more than 3 fold, while there showed some downregulated genes by less than 1/3 fold as follows: colony stimulating factor 2, CD122, IL-7, CD112, TNF-alpha, CD138, CD166, TGFbetaR2, CD42b, CD62L, CD111, interleukin 10 receptor alpha, colony stimulating factor 1(macrophage), CD38 antigen(p45), CD121a, CD33 antigen(gp67), colony stimulating factor 1 receptor, B cell linker protein (SLP65) mRNA, CD94, alanyl(membrane) aminopeptidase, immunoglobulin(CD79A) binding protein 1, CD205, CD241, CD207, CDw121b, integrin alpha L(CD11a), integrin beta 1(CD29), CD91, CD42b. Conclusions: Bee venom treatment induced downregulation of some CDs or cytokines including $TNF-{\alpha}$. IL-1R with its possible implication in an antiinflammatory action of BV. Further research on expression profile changes induced by BV treatment is expected.

  • PDF

Kalopanaxsaponin A Exerts Anti-Inflammatory Effects in Lipopolysaccharide-Stimulated Microglia via Inhibition of JNK and NF-κB/AP-1 Pathways

  • Jeong, Yeon-Hui;Hyun, Jin-Won;Le, Tien Kim Van;Kim, Dong-Hyun;Kim, Hee-Sun
    • Biomolecules & Therapeutics
    • /
    • v.21 no.5
    • /
    • pp.332-337
    • /
    • 2013
  • Microglial activation plays an important role in the development and progression of various neurological disorders such as cerebral ischemia, multiple sclerosis, and Alzheimer's disease. Thus, controlling microglial activation can serve as a promising therapeutic strategy for such brain diseases. In the present study, we showed that kalopanaxsaponin A, a triterpenoid saponin isolated from Kalopanax pictus, inhibited inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and tumor necrosis factor (TNF)-${\alpha}$ expression in lipopolysaccharide (LPS)-stimulated microglia, while kalopanaxsaponin A increased anti-inflammatory cytokine interleukin (IL)-10 expression. Subsequent mechanistic studies revealed that kalopanaxsaponin A inhibited LPS-induced DNA binding activities of NF-${\kappa}B$ and AP-1, and the phosphorylation of JNK without affecting other MAP kinases. Furthermore, kalopanaxsaponin A inhibited the intracellular ROS production with upregulation of anti-inflammatory hemeoxygenase-1 (HO-1) expression. Based on the previous reports that JNK pathway is largely involved in iNOS and proinflammatory cytokine gene expression via modulating NF-${\kappa}B$/AP-1 and ROS, our data collectively suggest that inhibition of JNK pathway plays a key role in anti-inflammatory effects of kalopanaxsaponin A in LPS-stimulated microglia.

Effects of troxerutin on vascular inflammatory mediators and expression of microRNA-146a/NF-κB signaling pathway in aorta of healthy and diabetic rats

  • Che, Xing;Dai, Xiang;Li, Caiying
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.24 no.5
    • /
    • pp.395-402
    • /
    • 2020
  • This study has investigated the effect of a potent bioflavonoid, troxerutin, on diabetes-induced changes in pro-inflammatory mediators and expression of microRNA-146a and nuclear factor-kappa-B (NF-κB) signaling pathway in aortic tissue of type-I diabetic rats. Male Wistar rats were randomly divided into four groups (n = 6/each): healthy, healthy-troxerutin, diabetic, and diabetic-troxerutin. Diabetes was induced by streptozotocin injection (60 mg/kg; intraperitoneally) and lasted 10 weeks. Troxerutin (150 mg/kg/day) was administered orally for last month of experiment. Inflammatory cytokines IL-1β, IL-6, and TNF-α, as well as intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule (VCAM), cyclooxygenase-II (COX-II), and inducible-nitric oxide synthase (iNOS) were measured on aortic samples by enzyme-linked immunosorbent assay. Gene expressions for transcription factor NF-κB, interleukin-1 receptor-associated kinase-1 (IRAK-1), TNF receptor-associated factor-6 (TRAF-6), and microRNA-146a were determined using real-time polymerase chain reaction. Ten-week diabetes significantly increased mRNA levels of IRAK-1, TRAF-6, NF-κB, and protein levels of cytokines IL-1β, IL-6, TNF-α, adhesion molecules ICAM-1, VCAM, and iNOS, COX-II, and decreased expression of microRNA-146a as compared with healthy rats (p < 0.05 to p < 0.01). However, one month treatment of diabetic rats with troxerutin restored glucose and insulin levels, significantly decreased expression of inflammatory genes and pro-inflammatory mediators and increased microRNA level in comparison to diabetic group (p < 0.05 to p < 0.01). In healthy rats, troxerutin had significant reducing effect only on NF-κB, TNF-α and COX-II levels (p < 0.05). Beside slight improvement of hyperglycemia, troxerutin prevented the activation of NF-κB-dependent inflammatory signaling in the aorta of diabetic rats, and this response may be regulated by microRNA-146a.

The Effect of Adiponectin on the Regulation of Filaggrin Expression in Normal Human Epidermal Keratinocytes

  • Choi, Sun Young;Kim, Min Jeong;Ahn, Ga Ram;Park, Kui Young;Lee, Mi-Kyung;Seo, Seong Jun
    • Annals of dermatology
    • /
    • v.30 no.6
    • /
    • pp.645-652
    • /
    • 2018
  • Background: Adiponectin, an adipokine secreted from adipocytes, affects energy metabolism and also shows anti-diabetic and anti-inflammatory properties. Recent studies have reported that adiponectin plays a role in regulating skin inflammation. Objective: This study aimed to investigate the effect of adiponectin on the expression of filaggrin (FLG) in normal human epidermal keratinocytes (NHEKs). Methods: NHEKs were serum-starved for 6h before being treated with adiponectin. Afterward, cell viability was assessed by MTT assay. We also treated with calcium, interleukin (IL)-4, and IL-13 to provide positive and negative comparative controls, respectively. Gene mRNA expression was quantified using real time reverse transcription polymerase chain reaction, and protein expression was evaluated using Western blot. To evaluate the relationship among mitogen-activated protein kinases (MAPKs), activator protein 1 (AP-1), and FLG, we also treated cells with inhibitors for MAPKs JNK, p38, and ERK1/2. Results: FLG and FLG-2 mRNA expression in NHEKs significantly increased after treatment with $10{\mu}g/ml$ adiponectin. Adiponectin also restored FLG and FLG-2 mRNA expression that was otherwise inhibited by treatment with IL-4 and IL-13. Adiponectin induced FLG expression via AP-1 and MAPK signaling. Conclusion: Adiponectin positively regulated the expression of FLG and could be useful as a therapeutic agent to control diseases related to disrupted skin barrier function.

Ethanol extract separated from Sargassum horneri (Turner) abate LPS-induced inflammation in RAW 264.7 macrophages

  • Sanjeewa, K.K. Asanka;Jayawardena, Thilina U.;Kim, Hyun-Soo;Kim, Seo-Young;Ahn, Ginnae;Kim, Hak-Ju;Fu, Xiaoting;Jee, Youngheun;Jeon, You-Jin
    • Fisheries and Aquatic Sciences
    • /
    • v.22 no.2
    • /
    • pp.6.1-6.10
    • /
    • 2019
  • Background: This study is aimed at identifying the anti-inflammatory properties of 70% ethanol extract produced from an edible brown seaweed Sargassum horneri (SJB-SHE) with industrial-scale production by Seojin Biotech Co. Ltd. S. horneri is a rich source of nutrient and abundantly growing along the shores of Jeju, South Korea. Methods: Here, we investigated the effect of SJB-SHE on LPS-activated RAW 264.7 macrophages. The cytotoxicity and NO production of SJB-SHE were evaluated using MTT and Griess assays, respectively. Additionally, protein expression and gene expression levels were quantified using ELISA, Western blots, and RT-qPCR. Results: Our results indicated that pre-treatment of RAW 264.7 macrophages with SJB-SHE significantly inhibited LPS-induced NO and $PGE_2$ production. SJB-SHE downregulated the proteins and genes expression of LPS-induced iNOS and COX2. Additionally, SJB-SHE downregulated LPS-induced production of pro-inflammatory cytokines (tumor necrosis factor-${\alpha}$, interleukin (IL)-6, and IL-$1{\beta}$). Furthermore, SJB-SHE inhibited nuclear factor kappa-B (NF-${\kappa}B$) activation and translocation to the nucleus. SJB-SHE also suppressed the phosphorylation of mitogen-activated protein kinases (ERK1/2 and JNK). Conclusions: Collectively, our results demonstrated that SJB-SHE has a potential anti-inflammatory property to use as a functional food ingredient in the future.

KMS99220 Exerts Anti-Inflammatory Effects, Activates the Nrf2 Signaling and Interferes with IKK, JNK and p38 MAPK via HO-1

  • Lee, Ji Ae;Kim, Dong Jin;Hwang, Onyou
    • Molecules and Cells
    • /
    • v.42 no.10
    • /
    • pp.702-710
    • /
    • 2019
  • Neuroinflammation is an important contributor to the pathogenesis of neurodegenerative disorders including Parkinson's disease (PD). We previously reported that our novel synthetic compound KMS99220 has a good pharmacokinetic profile, enters the brain, exerts neuroprotective effect, and inhibits $NF{\kappa}B$ activation. To further assess the utility of KMS99220 as a potential therapeutic agent for PD, we tested whether KMS99220 exerts an anti-inflammatory effect in vivo and examined the molecular mechanism mediating this phenomenon. In 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated mice, oral administration of KMS99220 attenuated microglial activation and decreased the levels of inducible nitric oxide synthase and interleukin 1 beta ($IL-1{\beta}$) in the nigrostriatal system. In lipopolysaccharide (LPS)-challenged BV-2 microglial cells, KMS99220 suppressed the production and expression of $IL-1{\beta}$. In the activated microglia, KMS99220 reduced the phosphorylation of $I{\kappa}B$ kinase, c-Jun N-terminal kinase, and p38 MAP kinase; this effect was mediated by heme oxygenase-1 (HO-1), as both gene silencing and pharmacological inhibition of HO-1 abolished the effect of KMS99220. KMS99220 induced nuclear translocation of the transcription factor Nrf2 and expression of the Nrf2 target genes including HO-1. Together with our earlier findings, our current results show that KMS99220 may be a potential therapeutic agent for neuroinflammation-related neurodegenerative diseases such as PD.