Browse > Article
http://dx.doi.org/10.4062/biomolther.2013.069

Kalopanaxsaponin A Exerts Anti-Inflammatory Effects in Lipopolysaccharide-Stimulated Microglia via Inhibition of JNK and NF-κB/AP-1 Pathways  

Jeong, Yeon-Hui (Department of Molecular Medicine, Tissue Injury Defense Research Center, Ewha Womans University Medical School)
Hyun, Jin-Won (Department of Biochemistry, College of Medicine, Cheju National University)
Le, Tien Kim Van (Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University)
Kim, Dong-Hyun (Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University)
Kim, Hee-Sun (Department of Molecular Medicine, Tissue Injury Defense Research Center, Ewha Womans University Medical School)
Publication Information
Biomolecules & Therapeutics / v.21, no.5, 2013 , pp. 332-337 More about this Journal
Abstract
Microglial activation plays an important role in the development and progression of various neurological disorders such as cerebral ischemia, multiple sclerosis, and Alzheimer's disease. Thus, controlling microglial activation can serve as a promising therapeutic strategy for such brain diseases. In the present study, we showed that kalopanaxsaponin A, a triterpenoid saponin isolated from Kalopanax pictus, inhibited inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and tumor necrosis factor (TNF)-${\alpha}$ expression in lipopolysaccharide (LPS)-stimulated microglia, while kalopanaxsaponin A increased anti-inflammatory cytokine interleukin (IL)-10 expression. Subsequent mechanistic studies revealed that kalopanaxsaponin A inhibited LPS-induced DNA binding activities of NF-${\kappa}B$ and AP-1, and the phosphorylation of JNK without affecting other MAP kinases. Furthermore, kalopanaxsaponin A inhibited the intracellular ROS production with upregulation of anti-inflammatory hemeoxygenase-1 (HO-1) expression. Based on the previous reports that JNK pathway is largely involved in iNOS and proinflammatory cytokine gene expression via modulating NF-${\kappa}B$/AP-1 and ROS, our data collectively suggest that inhibition of JNK pathway plays a key role in anti-inflammatory effects of kalopanaxsaponin A in LPS-stimulated microglia.
Keywords
Microglia; Kalopanaxsaponin A; Anti-inflammation; JNK; NF-${\kappa}B$; AP-1;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Woo, M. S., Jang, P. G., Park, J. S., Kim, W. K. Joh, T. H. and Kim, H. S. (2003) Selective modulation of lipopolysaccharide-stimulated cytokine expression and mitogen-activated protein kinase pathways by dibutyryl-cAMP in BV2 microglial cells. Brain Res. Mol. Brain Res. 113, 86-96.   DOI   ScienceOn
2 Lee, K. M., Kang, H. S., Yun, C. H. and Kwak H. S. (2012) Potential in vitro protective effect of quercetin, catechin, caffeic acid and phytic acid against ethanol-induced oxidative stress in SK-Hep-1 cells. Biomol. Ther. 20, 492-498.   DOI   ScienceOn
3 Park, H. J., Kim, D. H., Choi, J. W., Park, J. H. and Han, Y. N. (1998) A potent anti-diabetic agent from Kalopanax pictus. Arch. Pharm. Res. 21, 24-29.   과학기술학회마을   DOI   ScienceOn
4 Park, H. J., Kwon, S. H., Lee, J. H., Lee, K. H., Miyamoto K. and Lee K. T. (2001) Kalopanaxsaponin A is a basic saponin structure for the anti-tumor activity of hederagenin monodesmosides. Planta Med. 67, 118-121.   DOI   ScienceOn
5 Park J. S., Park E. M., Kim D. H., Jung K., Jung J. S., Lee E. J., Hyun J. W., Kang J. L. and Kim H. S. (2009a) Anti-inflammatory mechanism of ginseng saponins in activated microglia. J. Neuroimmunol. 209, 40-49.   DOI   ScienceOn
6 Park, S. K., Hwang, Y. S., Park, K. K., Park, H. J., Seo J. Y. and Chung, W. Y. (2009b) Kalopanaxsaponin A inhibits PMA-induced invasion by reducing matrix metalloproteinase-9 via PI3K/Akt- and $PKC{\delta}$-mediated signaling in MCF-7 human breast cancer cells. Carcinogenesis 30, 1225-1233.   DOI   ScienceOn
7 Quang, T. H., Ngan N. T., Van Minh C., Van Kiem P., Nhiem N. X., Tai B. H., Thao N. P., Chae D., Mathema V.B, Koh Y. S., Lee J. H., Yang S. Y. and Kim Y. H. (2013) Inhibitory effects of oleanane-type triterpenes and saponins from the stem bark of Kalopanax pictus on LPS-stimulated pro-inflammatory cytokine production in bone marrow-derived dendritic cells. Arch. Pharm. Res. 36, 327-334.   DOI   ScienceOn
8 Tremblay, M. E., Stevens, B., Sierra, A., Wake, H., Bessis, A. and Nimmerjahn, A. (2011) The role of microglia in the healthy brain. J. Neurosci. 31, 16064-16069.   DOI   ScienceOn
9 Watkins, L. R. and Maier, S. F. (2003) Glia: a novel drug discovery target for clinical pain. Nat. Rev. Drug Discov. 2, 973-985.   DOI   ScienceOn
10 Jeong, Y. H., Jung, J. S., Le, T. K., Kim, D. H. and Kim, H. S. (2013) Lancemaside A inhibits microglial activation via modulation of JNK signaling pathway. Biochem. Biophys. Res. Commun. 431, 369-375.   DOI   ScienceOn
11 Joh, E. H. and Kim, D.H. (2011) Kalopanaxsaponin A ameliorates experimental colitis in mice by inhibiting IRAK-1 activation in the NFkB and MAPK pathways. Br. J. Pharmacol. 162, 1731-1742.   DOI   ScienceOn
12 Joh, E. H., Lee I. A. and Kim, D. H. (2012) Kalopanaxsaponins A and B isolated from Kalopanax pictus ameliorate memory deficits in mice. Phytother. Res. 26, 546-551.   DOI   ScienceOn
13 Jung, J. S., Shin, J. A., Park, E. M., Lee, J. E., Kang, Y. S., Min, S. W., Kim, D. H., Hyun, J. W., Shin, C. Y. and Kim, H. S. (2010) Anti-inflammatory mechanism of ginsenoside Rh1 in lipopolysaccharide-stimulated microglia: critical role of the protein kinase A pathway and hemeoxygenase-1 expression. J. Neurochem. 115, 1668-1680.   DOI   ScienceOn
14 Kaminska, B. (2005) MAPK signaling pathways as molecular targets for anti-inflammatory therapy-from molecular mechanisms to therapeutic benefits. Biochem. Biophys. Acta 1754, 253-262.   DOI   ScienceOn
15 Keum, Y. S. (2012) Regulation of Nrf2-mediated phase II detoxification and anti-oxidant genes. Biomol. Ther. 20, 144-151.   DOI   ScienceOn
16 Kim, D. H., Bae, E. A., Han, M. J., Park, H. J. and Choi, J. W. (2002a) Metabolism of kalopanaxsaponin A by human intestinal bacteria and antirhematoid arthritis activity of their metabolites. Biol. Pharm. Bull. 25, 68-71.   DOI   ScienceOn
17 Block, M. L., Zecca, L. and Hong, J. S. (2007) Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat. Rev. Neurosci. 8, 57-69.   DOI   ScienceOn
18 Kim, Y. K., Kim, R. G., Park, S. J., Ha J. H., Choi, J. W., Park, H. J. and Lee K. T. (2002b) In vitro antiinflammatory activity of kalopanaxsaponin A isolated from Kalopanax pictus in murine macrophage RAW 264.7 cells. Biol. Pharm. Bull. 25, 472-476.   DOI   ScienceOn
19 Lee, E. B., Li, D. W., Hyun, J. E., Kim, I. H. and Whang, W. K. (2001) Anti-inflammatory activity of methanol extract of Kalopanax pictus bark and its fractions. J. Ethnopharmacol. 77, 197-201.   DOI   ScienceOn
20 Bedard, K. and Krause, K. H. (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol. Rev. 87, 245-313.   DOI   ScienceOn
21 Bocchini, V., Mazzolla, R., Barluzzi, R., Blasi, E. and Sick, P. (1992) An immortalized cell line expresses properties of activated microglial cells. J. Neurosci. Res. 31, 616-621.   DOI   ScienceOn
22 Hwang, Y. S., Park, K. K. and Chung, W. Y. (2012) Kalopanaxsaponin A inhibits the invasion of human oral squamous cell carcinoma by reducing metalloproteinase-9 mRNA stability and protein trafficking. Biol. Pharm. Bull. 35, 289-300.   DOI   ScienceOn
23 Gao, H. M., Zhou, H. and Hong J. S. (2012) NADPH oxidases: novel therapeutic targets for neurodegenerative diseases. Trends. Pharmacol. Sci. 33, 295-303.   DOI   ScienceOn
24 Glass, C. K., Saijo, K., Winner, B., Marchetto, M. C. and Gage, F. H. (2010) Mechanisms underlying inflammation in neurodegeneration. Cell 140, 918-934.   DOI   ScienceOn
25 Graeber, M. B. and Streit, W. J. (2010) Microglia: biology and pathology. Acta Neuropathol. 119, 89-105.   DOI   ScienceOn