• Title/Summary/Keyword: interface toughness

Search Result 136, Processing Time 0.028 seconds

Fracture Behavior of Cu-based leadframe/EMC joints (구리계 리드프레임/EMC 접합체의 파괴거동)

  • Lee, Ho-Young;Yu, Jin
    • Korean Journal of Materials Research
    • /
    • v.10 no.8
    • /
    • pp.551-557
    • /
    • 2000
  • Cu-based leadframe sheets were oxidized ic a hot alkaline solution to black-oxide layer on the surface and molded with epoxy molding compound(EMC), and finally machined to form sandwiched double-cantilever beam(SDCB) and sandwiched Brazil-nut(SBN)specimers to measure the adhesion strength of leadframe-EMC interface. The SDCB and the SBN specimens were designed to measure the adhesion strength in terms fracture toughness under puasi-mode I and mixed mode loadinf, respectively. After the tests, fracture surfaces were analyzed paths were observed in the SDCB-tested speciments, failure paths varied with crack speed and loading conditions.

  • PDF

Effects of TiN and B on Grain Refinement of HAZ Microstructure and Improvement of Mechanical Properties of High-strength Structural Steel Under High Heat Input Welding (고강도 구조용 철강소재의 대입열 용접 시 열영향부의 조직 미세화 및 기계적 특성 향상에 미치는 TiN 및 B의 효과)

  • Park, Jin-seong;Hwang, Joong-Ki;Cho, Jae Young;Han, Il Wook;Lee, Man Jae;Kim, Sung Jin
    • Korean Journal of Materials Research
    • /
    • v.29 no.2
    • /
    • pp.97-105
    • /
    • 2019
  • In the current steel structures of high-rise buildings, high heat input welding techniques are used to improve productivity in the construction industry. Under the high heat input welding, however, the microstructures of the weld metal (WM) and heat-affected zone (HAZ) coarsen, resulting in the deterioration of impact toughness. This study focuses mainly on the effects of fine TiN precipitates dispersed in steel plates and B addition in welding materials on grain refinement of the HAZ microstructure under submerged arc welding (SAW) with a high heat input of 200 kJ/cm. The study reveals that, different from that in conventional steel, the ${\gamma}$ grain coarsening is notably retarded in the coarse grain HAZ (CGHAZ) of a newly developed steel with TiN precipitates below 70 nm in size even under the high heat input welding, and the refinement of HAZ microstructure is confirmed to have improved impact toughness. Furthermore, energy dispersive spectroscopy (EDS) and secondary-ion mass spectrometry (SIMS) analyses demonstrate that B is was identified at the interface of TiN in CGHAZ. It is likely that B atoms in the WM are diffused to CGHAZ and are segregated at the outer part of undissolved TiN, which contributes partly to a further grain refinement, and consequently, improved mechanical properties are achieved.

Bond, Flexural Properties and Control of Plastic Shrinkage Cracking of Crimped type Synthetic Fiber Reinforced Cement Based Composites (Crimped Type 합성섬유로 보강된 시멘트 복합재료의 부착, 휨 및 소성수축균열제어 특성)

  • Won, Jong Pil;Park, Chan Gi;Lim, Dong Hee;Back, Chul Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6A
    • /
    • pp.1033-1039
    • /
    • 2006
  • The purpose of this study are to evaluated bond, flexural properties and control of plastic shrinkage cracking of crimped type synthetic fiber with amplitude 6 mm and height 1.8 mm reinforced cement based composites. Bond and flexural test were conducted in accordance with the JCI-SF 8 and JCI SF-4 standard, respectively. The plastic shrinkage cracking test was conducted for evaluating the effect of fiber in reducing shrinkage cracking in cement based composites. Test results indicated that the crimped typel synthetic fibers performed significantly better than the straight type fiber in terms of interface toughness and pullout load and the crimped type synthetic fibers improved the flexural toughness of concrete. Also, the increasing the crimped type synthetic fiber volume fraction from 0.00% to 1.00% improved the plastic shrinkage cracking resistance. Specially, the effect of control of plastic shrinkage cracking is excellent at the more than 0.5% fibre volume fraction.

The fracture resistance of heat pressed ceramics with wire reinforcement (금속선 강화에 따른 열 가압 도재의 파절저항)

  • Jo, Deuk-Won;Dong, Jin-Keun;Oh, Sang-Chun;Kim, Yu-Lee
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.47 no.2
    • /
    • pp.191-198
    • /
    • 2009
  • Statement of problem: Ceramics have been important materials for the restoration of teeth. The demands of patients for tooth-colored restorations and the availability of various dental ceramics has driven the increased use of new types of dental ceramic materials. Improved physical properties of theses materials have expanded its use even in posterior crowns and fixed partial dentures. However, ceramic still has limitation such as low loading capability. This is critical for long-span bridge, because bridge is more subject to tensile force. Purpose: The wire reinforced ceramic was designed to increase the fracture resistance of ceramic restoration. The purpose of this study was to evaluate the fracture resistance of wire reinforced ceramic. Material and methods: Heat pressed ceramic(ingot No.200 : IPS Empress 2, Ivoclar Vivadent, Liechtenstein) and Ni-Cr wire(Alfa Aesar, Johnson Matthey Company, USA) of 0.41 mm diameter were used in this study. Five groups of twelve uniform sized ceramic specimens(width 4 mm, thickness 2 mm, length 15 mm) were fabricated. Each group had different wire arrangement. Wireless ceramic was used as control group. The experimental groups were divided according to wire number and position. One, two and three strands of wires were positioned on the longitudinal axis of specimen. In another experimental group, three strands of wires positioned on the longitudinal axis and five strands of wires positioned on the transverse axis. Three-point bending test was done with universal testing machine(Z020, Zwick, Germany) to compare the flexural modulus, flexural strength, strain at fracture and fracture toughness of each group. Fractured ceramic specimens were cross-sectioned with caborundum disc and grinded with sandpaper to observe interface between ceramic and Ni-Cr wire. The interface between ceramic and Ni-Cr wire was analyzed with scanning electron microscope(JSM-6360, JEOL, Japan) under platinum coating. Results: The results obtained were as follows: 1. The average and standard deviation in flexural modulus, flexural strength and fracture toughness showed no statistical differences between control and experimental groups. However, strain was significantly increased in wire inserted ceramics(P<.001). 2. Control group showed wedge fracture aspects across specimen, while experimental groups showed cracks across specimen. 3. Scanning electron microscopic image of cross-sectioned and longitudinally-sectioned specimens showed no gap at the interface between ceramic and Ni-Cr wire. Conclusion: The results of this study showed that wire inserted ceramics have a high strain characteristic. However, wire inserted ceramics was not enough to use at posterior area of mouth in relation to flexural modulus and flexural strength. Therefore, we need further studies.

Effect of Bamboo Fiber Grinding on the Mechanical, Thermal, Impact, and Water Absorption Properties of Bamboo/Poly(lactic acid) Biocomposites (대나무/폴리락틱산 바이오복합재료의 기계적, 열적, 충격 및 수분흡수 특성에 미치는 대나무섬유 분쇄의 영향)

  • Cho, Yong Bum;Cho, Donghwan
    • Journal of Adhesion and Interface
    • /
    • v.13 no.3
    • /
    • pp.121-130
    • /
    • 2012
  • In the present study, bamboo/PLA biocomposites through injection molding process using extruded bamboo/PLA pellets with the fiber contents of 30, 40, and 50 wt% according to the presence and absence of bamboo fiber grinding, respectively, were fabricated and their mechanical, thermal, impact, and water absorption properties were explored. Compared to neat PLA, the flexural modulus, tensile modulus, storage modulus and impact strength of bamboo/PLA biocomposites were considerably increased. In particular, the moduli were further increased by introducing the ground bamboo fibers. In addition, use of the ground bamboo fibers was effective to enhance the long-term water resistance of the biocomposites. The heat treatment temperature of neat PLA was improved by 16% by incorporating the bamboo fibers and the fiber grinding effect was slight. The incorporation of the ground bamboo fibers to PLA did not influence the tensile strength and impact toughness of bamboo/PLA biocomposites.

Cu Thickness Effects on Bonding Characteristics in Cu-Cu Direct Bonds (Cu 두께에 따른 Cu-Cu 열 압착 웨이퍼 접합부의 접합 특성 평가)

  • Kim, Jae-Won;Jeong, Myeong-Hyeok;Carmak, Erkan;Kim, Bioh;Matthias, Thorsten;Lee, Hak-Joo;Hyun, Seung-Min;Park, Young-Bae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.4
    • /
    • pp.61-66
    • /
    • 2010
  • Cu-Cu thermo-compression bonding process was successfully developed as functions of the deposited Cu thickness and $Ar+H_2$ forming gas annealing conditions before and after bonding step in order to find the low temperature bonding conditions of 3-D integrated technology where the interfacial toughness was measured by 4-point bending test. Pre-annealing with $Ar+H_2$ gas at $300^{\circ}C$ is effective to achieve enough interfacial adhesion energy irrespective of Cu film thickness. Successful Cu-Cu bonding process achieved in this study results in delamination at $Ta/SiO_2$ interface rather than Cu/Cu interface.

A Study for Joining of Silicon Nitride with Crystallized Glass Solder of $SiO_2-Al_2O_3-MgO$ System ($SiO_2-Al_2O_3-MgO$계 결정화 유리 솔더에 의한 질화규소의 접합에 관한 연구)

  • 안병국
    • Journal of Welding and Joining
    • /
    • v.21 no.1
    • /
    • pp.107-113
    • /
    • 2003
  • Joining of $Si_3N_4$ to $Si_3N_4$ with crystallized glass solder was studied. $SiO_2-Al_2O_3-MgO$ glass with $P_2O_5$ as a crystallizing reagent was used as a solder. To improve the hish temperature toughness of joined specimen, two stage heat treatment was applied to Joined sample for the crystallization of joined layer, Two factors, i.e. thickness of soldered layer and crystallization were taken and thier effects on joining strength were investigated by a SEM-EDX observation of joined interface and bending strength both at room and elevated temperatures. Obtained results are summarized as follows: (1) Nitrogen diffused from $Si_3N_4$ to solder during the Joining process. Average amount of nitrogen in soldered layer depended on the thickness of the soldered layer and increased with decrease of the thickness. (2) Joining strength of the specimen having a thinner soldered layer was stronger than that of thicker layer. This can be mainly attributed to the difference of the nitrogen content in the soldered layer. (3) Higher content of nitrogen in solder brought forth higher viscosity of the solder. Hence the crystallization of the solder become more difficult in thinner layer of the solder than thicker one. (4) Thus, the effect of crystallization was evaluated mostly by the thicker layer specimen. Crystallization of soldered layer improved markedly the fracure strength of joining at higher temperatures than the softening temperature of glass solder.

Microstructure, Mechanical and Wear Properties of Hot-pressed $Si_3N_4-TiB_2$ Composite

  • Kim, Hyun-Jin;Lee, Soo-Whon;Tadachika Nakayama;Koichi Niihara
    • The Korean Journal of Ceramics
    • /
    • v.5 no.4
    • /
    • pp.324-330
    • /
    • 1999
  • $Si_3N_4$-$TiB_2$ with 2 wt% $Al_2O_3$ and 4 wt% $Y_2O_3$ additives was hot pressed in a flowing $N_2$ environment with varying $TiB_2$ content from 10 to 50 vol%. Variations of mechanical (hardness, fracture toughness, and flexual strength), and tribological properties as a function of $TiB_2$ content were investigated. As the content of $TiB_2$ increased, relative density decreased due to the chemical reaction of $TiB_2$in $N_2$ environment. The reduction of density causes mechanical properties to be degraded with an increase of $TiB_2$ in $Si_3N_4$. Tribological properties were dependent of microstructure as well as mechanical properties, however, they were degraded strongly by the chemical reaction of $Si_3N_4$-$TiB_2$ during hot pressing in $N_2$ environment. SEM and TEM observations, and X-ray diffraction analysis that the chemical reaction products at the interface are TiCN, Si, and $SiO_2$. Also, the comparison of XRD patterns of the $Si_3N_4$-40 vol% $TiB_2$ composites hot pressed at $1,750^{\circ}C$ for 1 hour between in $N_2$ and in Ar gas was made. The XRD peaks of Si and $SiO_2$ were not found in Ar, but still a weak peak of TiCN was presented.

  • PDF

Mechanical Properties and Fabrication of Nanostructured Al2TiO5 Compound by Pulsed Current Activated Sintering (펄스전류 활성 소결에 의한 나노구조 Al2TiO5 화합물 제조 및 기계적 특성)

  • Kang, Hyun-Su;Park, Hyun-Kuk;Doh, Jung-Mann;Yoon, Jin-Kook;Park, Bang-Ju;Shon, In-Jin
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.11
    • /
    • pp.817-822
    • /
    • 2012
  • Nano powders of $Al_2O_3$ and $TiO_2$ compounds made by high energy ball milling were pulsed current activated sintered for studying their sintering behaviors and mechanical properties. The advantage of this process is that it allows very quick densification to near theoretical density and inhibition of grain growth. Nano-structured $Al_2TiO_5$ with small amount of $Al_2O_3$ and$TiO_2$ was formed by sintering at $1300^{\circ}C$ for 5 minute, in which average grain size was about 96 nm. Hardness and fracture toughness of the nano-structured $Al_2TiO_5$ compound with a small amount of $Al_2O_3$ and$TiO_2$ were $602kg/mm^2$ and $2.6MPa{\cdot}m^{1/2}$, respectively.

Rapid Synthesis and Sintering of Nanostructured MgTiO3 Compound by High-Frequency Induction Heating (고주파 유도 가열에 의한 급속 나노구조 MgTiO3 화합물 합성 및 소결)

  • Kang, Hyun-Su;Doh, Jung-Mann;Yoon, Jin-Kook;Park, Bang-Ju;Shon, In-Jin
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.12
    • /
    • pp.891-896
    • /
    • 2012
  • Nanopowders of MgO and $TiO_2$ were made by high energy ball milling. The rapid synthesis and sintering of the nanostructured $MgTiO_3$ compound was investigated by the high-frequency induction heated sintering process. The advantage of this process is that it allows very quick densification to near theoretical density and inhibition grain growth. Nanocrystalline materials have received much attention as advanced engineering materials with improved physical and mechanical properties. As nanomaterials possess high strength, high hardness, excellent ductility and toughness, undoubtedly, more attention has been paid for the application of nanomaterials. A highly dense nanostructured $MgTiO_3$ compound was produced with simultaneous application of 80 MPa pressure and induced current within 2 min. The sintering behavior, gain size and mechanical properties of $MgTiO_3$ compound were investigated.