The fracture resistance of heat pressed ceramics with wire reinforcement

금속선 강화에 따른 열 가압 도재의 파절저항

  • Jo, Deuk-Won (Department of Prosthodontics, College of Dentistry, Wonkwang University) ;
  • Dong, Jin-Keun (Department of Prosthodontics, College of Dentistry, Wonkwang University) ;
  • Oh, Sang-Chun (Department of Prosthodontics, College of Dentistry, Wonkwang University) ;
  • Kim, Yu-Lee (Department of Prosthodontics, College of Dentistry, Wonkwang University)
  • 조득원 (원광대학교 치과대학 보철학교실, 원광치의학 연구소) ;
  • 동진근 (원광대학교 치과대학 보철학교실, 원광치의학 연구소) ;
  • 오상천 (원광대학교 치과대학 보철학교실, 원광치의학 연구소) ;
  • 김유리 (원광대학교 치과대학 보철학교실, 원광치의학 연구소)
  • Published : 2009.04.30

Abstract

Statement of problem: Ceramics have been important materials for the restoration of teeth. The demands of patients for tooth-colored restorations and the availability of various dental ceramics has driven the increased use of new types of dental ceramic materials. Improved physical properties of theses materials have expanded its use even in posterior crowns and fixed partial dentures. However, ceramic still has limitation such as low loading capability. This is critical for long-span bridge, because bridge is more subject to tensile force. Purpose: The wire reinforced ceramic was designed to increase the fracture resistance of ceramic restoration. The purpose of this study was to evaluate the fracture resistance of wire reinforced ceramic. Material and methods: Heat pressed ceramic(ingot No.200 : IPS Empress 2, Ivoclar Vivadent, Liechtenstein) and Ni-Cr wire(Alfa Aesar, Johnson Matthey Company, USA) of 0.41 mm diameter were used in this study. Five groups of twelve uniform sized ceramic specimens(width 4 mm, thickness 2 mm, length 15 mm) were fabricated. Each group had different wire arrangement. Wireless ceramic was used as control group. The experimental groups were divided according to wire number and position. One, two and three strands of wires were positioned on the longitudinal axis of specimen. In another experimental group, three strands of wires positioned on the longitudinal axis and five strands of wires positioned on the transverse axis. Three-point bending test was done with universal testing machine(Z020, Zwick, Germany) to compare the flexural modulus, flexural strength, strain at fracture and fracture toughness of each group. Fractured ceramic specimens were cross-sectioned with caborundum disc and grinded with sandpaper to observe interface between ceramic and Ni-Cr wire. The interface between ceramic and Ni-Cr wire was analyzed with scanning electron microscope(JSM-6360, JEOL, Japan) under platinum coating. Results: The results obtained were as follows: 1. The average and standard deviation in flexural modulus, flexural strength and fracture toughness showed no statistical differences between control and experimental groups. However, strain was significantly increased in wire inserted ceramics(P<.001). 2. Control group showed wedge fracture aspects across specimen, while experimental groups showed cracks across specimen. 3. Scanning electron microscopic image of cross-sectioned and longitudinally-sectioned specimens showed no gap at the interface between ceramic and Ni-Cr wire. Conclusion: The results of this study showed that wire inserted ceramics have a high strain characteristic. However, wire inserted ceramics was not enough to use at posterior area of mouth in relation to flexural modulus and flexural strength. Therefore, we need further studies.

연구목적: 본 연구는 높은 심미성을 나타내지만 낮은 파절 강도로 인하여 구치부에서의 사용이 제한되고 있는 전부도재 고정성 국소의치의 파절강도를 증가시키기 위한 방법으로, 취성 재료인 도재에 인장강도가 높은 금속선을 삽입하고 물리적, 기계적 성질을 알아보고자 하였다. 연구 재료 및 방법: lithium disilicate(ingot No.200 : IPS Empress 2, Ivoclar Vivadent, Lichtenstein)와 0.41 mm 직경의 Ni-Cr 금속선(Alfa Aesar, Johnson Matthey Company, USA)을 사용하여, 금속선의 수와 배열을 달리한 4개의 실험군 시편을 제작하였다. 모든 시편은 폭 4 mm, 두께 2 mm, 길이 15 mm의 직육면체로 제작하였다. 실험군 1, 2, 3은 각각 한 가닥, 두 가닥, 세 가닥의 금속선을 도재 시편의 장축을 따라 배열하였으며, 실험군 4는 세 가닥의 금속선을 도재 시편의 장축에, 다섯 가닥의 금속선을 도재 시편의 횡축에 배열하였다. 대조군에는 금속선을 삽입하지 않았으며, 대조군 및 각각의 실험군의 시편은 각 군당 12개로 하였다. 결과: 만능 시험기(Z020, Zwick, Germany)를 이용하여 파절시점까지 하중을 가한 후, 굴곡계수, 굴곡강도, 파절시점까지의 변형률, 파괴인성을 측정하였다. 파절된 시편의 도재와 금속선의 계면을 횡절단 및 연마하여 주사전자현미경(JSM-6360, JEOL, Japan)으로 100배상에서 관찰하였다. 결과는 다음과 같다. 1. 도재에 금속선을 삽입한 결과, 금속선을 삽입하지 않은 대조군에 비해 통계적 유의성 있는 굴곡계수 및 굴곡강도의 변화는 관찰할 수 없었으나, 변형률의 유의성 있는 증가(P<.001)를 관찰할 수 있었다. 2. 금속선을 삽입한 시편의 파절 양상은 하중점 부위에서 도재만 파절되는 양상을 나타내었다. 3. 금속선을 삽입한 도재의 파절된 시편을 횡절단 및 종절단하여 100 배상에서 주사전자현미경으로 촬영한 결과, 하중 시 도재의 파절 원인이 될 수 있는 도재 내부의 기포는 관찰되지 않았으며, 도재와 금속선 사이의 gap도 관찰되지 않았다. 결론: 금속선 삽입의 결과, 취성 재료인 도재의 통계적으로 유의성 있는 변형률의 증가를 관찰할 수 있었다. 그러나 구치부에서 금속선 강화 도재의 사용을 위해서는 굴곡계수 및 굴곡강도의 향상이 필요하다. 이를 위해서는 추가적 연구가 필요하다.

Keywords

References

  1. Schweiger M, Hoeland W, Frank M, Drescher H, Rheinberger V. IPS Empress 2: A New Pressable High strength Glass-Ceramic for Esthetic All-Ceramic Restorations. Quint Dent Technol 1999;18;143-51
  2. Kim DJ, Han JS. Ceramic materials for dental restoration. J Korean Ceram Soc 1995;10;411-17
  3. Seghi RR, Sorensen JA. Relative flexural strength of six new ceramic materials. Int J Prosthodont 1995;8;239-46
  4. Shimizu K, Oka M, Kumar P, Kotoura Y, Yamamuro T, Makinouchi K, Nakamura T. Time-dependent changes in the mechanical properties of zirconia ceramic. J Biomed Mater Res 1993;27;729-34 https://doi.org/10.1002/jbm.820270605
  5. Guazzato M, Albakry M, Swain MV, Ironside J. Mechanical properties of In-Ceram Alumina and In-Ceram Zirconia. Int J Prosthodont 2002;15;339-46
  6. McLaren EA, White SN. Glass-infiltrated zirconia/alumina-based ceramic for crowns and fixed partial dentures. Pract Periodontics Aesthet Dent 1999;11;985-94
  7. Tinschert J, Zwez D, Marx R, Anusavice KJ. Structural reliability of alumina-, feldspar-, leucite-, mica- and zirconiabased ceramics. J Dent 2000;28;529-35 https://doi.org/10.1016/S0300-5712(00)00030-0
  8. Lawn BR, Deng Y, Lloyd IK, Janal MN, Rekow ED, Thompson VP. Materials design of ceramic-based layer structures for crowns. J Dent Res 2002;81;433-8 https://doi.org/10.1177/154405910208100615
  9. Craig RG. Restorative Dental Materials, 6th ed, C. V. Mosby, St. Louis, MO, 1980;60-1
  10. Kelly JR. Clinically relevant approach to failure testing of all-ceramic restorations. J Prosthet Dent 1999;81;652-61 https://doi.org/10.1016/S0022-3913(99)70103-4
  11. Tinschert J, Natt G, Mautsch W, Spiekermann H, Anusavice KJ. Marginal fit of alumina-and zirconia-based fixed partial dentures produced by a CAD/CAM system. Oper Dent 2001;26;367-74
  12. Bindl A, Mormann WH. Marginal and internal fit of all-ceramic CAD/CAM crown-copings on chamfer preparations. J Oral Rehabil 2005;32;441-7 https://doi.org/10.1111/j.1365-2842.2005.01446.x
  13. Kokubo Y, Nagayama Y, Tsumita M, Ohkubo C, Fukushima S, Vult von Steyern P. Clinical marginal and internal gaps of In-Ceram crowns fabricated using the GN-I system. J Oral Rehabil 2005;32;753-8 https://doi.org/10.1111/j.1365-2842.2005.01506.x
  14. Dong JK. Dental bridge used with wire reinforced ceramic. Korean Patent. The Industrial Property Office 2005
  15. Dong JK, Luthy H, Wohlwend A, Scharer P. Heat-pressed ceramics: technology and strength. Int J Prosthodont 1992:5:9-16
  16. Cattell MJ, Knowles JC, Clarke RL, Lynch E. The biaxial flexural strength of two pressable ceramic systems. J Dent 1999;27;183-96 https://doi.org/10.1016/S0300-5712(98)00047-5
  17. Fischer H, Schafer M, Marx R. Effect of surface roughness on flexural strength of veneer ceramics. J Dent Res 2003;82;972-5 https://doi.org/10.1177/154405910308201207
  18. Albakry M, Guazzato M, Swain MV. Effect of sandblasting, grinding, polishing and glazing on the flexural strength of two pressable all-ceramic dental materials. J Dent 2004;32;91-9 https://doi.org/10.1016/j.jdent.2003.08.006
  19. Kang HJ, Dong JK, Oh SC, Lee HH, Song KC. A study on the stress distribution of posterior fixed partial denture with various all-ceramic systems. J Korean Acad Prosthodont 2005:43:204-17
  20. Fischer H, Weber M, Marx R. Lifetime prediction of all-ceramic bridges by computational methods. J Dent Res 2003;82;238-42 https://doi.org/10.1177/154405910308200317
  21. Kelly JR, Giordano R, Pober R, Cima MJ. Fracture surface analysis of dental ceramics: clinically failed restorations. Int J Prosthodont 1990;3:430-40
  22. Anusavice KJ, Hojjatie B. Tensile stress in glass-ceramic crowns: effect of flaws and cement voids. Int J Prosthodont 1992;5:351-8
  23. Fairhurst CW, Lockwood PE, Ringle RD, Twiggs SW. Dynamic fatigue of feldspathic porcelain. Dent Mater 1993;9;269-7 https://doi.org/10.1016/0109-5641(93)90073-Y
  24. Green DJ. An introduction to the mechanical properties of ceramics. 1998; Cambridge; Cambridge University Press
  25. Marx R, Fischer H, Weber M, Jungwirth F. Crack parameters and Weibull moduli: subcritical crack growth and longterm durability of all-ceramic materials. Dtsch Zahnaztl Z 2001;56;90-8
  26. Guazzato M, Albakry M, Ringer SP, Swain MV. Strength, fracture toughness and microstructure of a selection of allceramic materials. Part I. Pressable and alumina glass-infiltrated ceramics. Dent Mater 2004;20:441-8 https://doi.org/10.1016/j.dental.2003.05.003
  27. Kim SR, Kim WS, Lee IK, Dong JK. The change of wire according to the heat pressing of ceramic in wire-reinforced ceramics. J Korean Acad Stoma Occ 2006;22;1-10
  28. Schweitzer DM, Goldstein GR, Ricci JL, Silva NR, Hittelman EL. Comparison of bond strength of a pressed ceramic fused to metal versus feldspathic porcelain fused to metal. J Prosthodont 2005;14;239-47 https://doi.org/10.1111/j.1532-849X.2005.00052.x