Browse > Article
http://dx.doi.org/10.3740/MRSK.2019.29.2.97

Effects of TiN and B on Grain Refinement of HAZ Microstructure and Improvement of Mechanical Properties of High-strength Structural Steel Under High Heat Input Welding  

Park, Jin-seong (Department of Advanced Materials Engineering, Sunchon National University)
Hwang, Joong-Ki (School of Mechanical Engineering, Tongmyong University)
Cho, Jae Young (POSCO Technical Research Laboratories)
Han, Il Wook (POSCO Technical Research Laboratories)
Lee, Man Jae (Analysis and Assessment Group, Research Institute of Industrial Science and Technology (RIST))
Kim, Sung Jin (Department of Advanced Materials Engineering, Sunchon National University)
Publication Information
Korean Journal of Materials Research / v.29, no.2, 2019 , pp. 97-105 More about this Journal
Abstract
In the current steel structures of high-rise buildings, high heat input welding techniques are used to improve productivity in the construction industry. Under the high heat input welding, however, the microstructures of the weld metal (WM) and heat-affected zone (HAZ) coarsen, resulting in the deterioration of impact toughness. This study focuses mainly on the effects of fine TiN precipitates dispersed in steel plates and B addition in welding materials on grain refinement of the HAZ microstructure under submerged arc welding (SAW) with a high heat input of 200 kJ/cm. The study reveals that, different from that in conventional steel, the ${\gamma}$ grain coarsening is notably retarded in the coarse grain HAZ (CGHAZ) of a newly developed steel with TiN precipitates below 70 nm in size even under the high heat input welding, and the refinement of HAZ microstructure is confirmed to have improved impact toughness. Furthermore, energy dispersive spectroscopy (EDS) and secondary-ion mass spectrometry (SIMS) analyses demonstrate that B is was identified at the interface of TiN in CGHAZ. It is likely that B atoms in the WM are diffused to CGHAZ and are segregated at the outer part of undissolved TiN, which contributes partly to a further grain refinement, and consequently, improved mechanical properties are achieved.
Keywords
high heat input welding; coarse grain heat affected zone; TiN; B; secondary-ion mass spectrometry;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. J. Kim and H. C. Jeong, J. Weld. Join., 34, 7 (2016).   DOI
2 G. B. An, I. W. Han, J. G. Park and W. C. Woo, J. Weld. Join., 35, 15 (2017).
3 J. U. Park, G. B. An and W. C. Woo, J. Weld. Join., 34, 16 (2016).
4 X. Zhang, G. Mi, L. Chen, P. Jiang, X. Shao and C. Wang, J. Mater. Process. Tech., 259, 312 (2018).   DOI
5 W. Woo, G. B. An, E. J. Kingston, A. T. Dewald, D.J. Smith and M. R. Hill, Acta. Mater., 61, 3564 (2013).   DOI
6 C. Liu, J. Yang, Y. Shi, Q. Fu and Y. Zhao, J. Mater. Process. Tech., 256, 239 (2018).   DOI
7 M. Yanet and Z. Monica, Procedia Mater. Sci., 8, 904 (2015).   DOI
8 L. H. S. Barbosa, P. J. Modenesi, L. B. Godefroid and A. R. Arias, Int. J. Fatig., 18, 30571 (2018).
9 M. Shi, P. Zhang, C. Wang and F. Zhu, ISIJ. Int., 54, 932 (2014).   DOI
10 Y. Tomita, N. Saito, T. Tsuzuki, Y. Tokunaga and K. Okamoto, ISIJ. Int., 34, 829 (1994).   DOI
11 F. Chai, C. Yang, H. Su, Y. Zhang, Z. Xu and Y. Yang, Acta. Metall. Sin., 21, 220 (2008).   DOI
12 A. Kojima, A. Kiyose, R. Uemori, M. Mingawa, M. Hoshino, T. Nakashima, K. Ishida and H. Yasui, Nippon Steel Technical Report, 90, 2 (2004).
13 J-H. Shim, Y. W. Cho, S. H. Chung, J-D. Shim and D. N. Lee, Acta Mater., 47, 2751 (1999).   DOI
14 F. Ishikawa and T. Takahashi, ISIJ. Int., 35, 1128 (1995).   DOI
15 K. M. Ryu, D. W. Kim, J. W. Lee and H. C. Bang, J. Weld. Join., 35, 27 (2017).   DOI
16 H. C. Jeong, Y. H. Park, Y. H. An and J. B. Lee, J. Weld. Join., 25, 57-62 (2007).
17 J. O. Moon and S. J. Park, J. Weld. Join., 33, 31 (2015).   DOI
18 T. Saunders, P. Tatarko, S. Grasso and M. J. Reece, J. Euro. Cera. Soc., 38, 4198 (2018).   DOI
19 Y. Cai, Z. Luo, Z. Huang and Y. Zeng, J. Mater. Process. Tech., 230, 80 (2016).   DOI
20 Y. L. Gao, X. X. Xue and H. Yang, Crystlas, 5, 592 (2015).   DOI
21 H. Tamura, J. Jpn. Weld. Soc., 35, 710 (1966).   DOI
22 E. E. Kashif, K. Asakura, T. Koseki and K. Shibata, ISIJ. Int., 44, 1568 (2004).   DOI
23 B. Subramanian and M. Jayachandran, Mater. Lett., 62, 1727 (2008).   DOI
24 T. Yamashita, J. Shimamura, K. Oi, M. Nagoshi, K. Oikawa and K. Ishida, ISIJ. Int., 55, 2018 (2015).   DOI
25 N. Fujiyama, T. Nishibata, A. Seki, H. Hirata, K. Kojima and K. Ogawa, Sci. Tech. Adv. Mater., 18, 88 (2016).   DOI
26 J. K. Choi, Development of high strength and high performance steels at POSCO through hipers-21 Project, Phase Transformations Web. Retrieved 2005 from https://www.phase-trans.msm.cam.ac.uk
27 Y. J. Kang, G. T. Park, S. H. Jeong and C. H. Lee, J. Weld. Join., 35, 21 (2017).
28 J. S. Kim, K. T. Park, D. Lee and C. S. Lee, Korean J. Met. Mater., 45, 506 (2007).
29 G. T. Park, S. U. Koh, H. G. Jung and K. Y. Kim, Corrosion Sci., 50, 1865 (2008).   DOI
30 H. Hagi, Mater. Trans., 35, 168 (1994).   DOI
31 G. W. Hong and J. Y. Lee, J. Mater. Sci., 18, 271 (1983).   DOI
32 G. W. Hong and J. Y. Lee, Metall. Trans. A, 14, 156 (1983).   DOI
33 H. K. D. H. Bahadeshia, ISIJ. Int., 56, 24 (2016).   DOI
34 D. G. Enos and J. R. Scully, Metall. Mater. Trans. A, 33, 1151 (2002).   DOI