• Title/Summary/Keyword: interface delamination

Search Result 138, Processing Time 0.027 seconds

A Study on Co-Firing of Multilayer Chip LC Filter by Control of Shrinkage (수축율 조절에 의한 적층 칩 LC Filter의 동시 소성에 관한 연구)

  • Kim, Kyung-Yong;Lee, Jong-Kyu;Kim, Wang-Sup;Choi, Hwan
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.9
    • /
    • pp.675-682
    • /
    • 1991
  • Among many problems that need to be solved in the process of preparing multilayer chip LC filters, we studied the control of shrinkage in order to prevent the crack, warpage, and/or delamination which occurs at the interface between the inductance (L part) and the capacitance (C part). Shrinkage was controlled by compositions, powder size, calcining temperature and amount of organic binder. Capacitance sheet was prepared by mixing 65 wt% binder with the composition of 96 wt% TiO2 having an average particle size of 0.5 $\mu\textrm{m}$, 3 wt% CuO. After small amount of MnO2 and SiO2 added, it was calcined at 750$^{\circ}C$ for 2 hr. Inductance sheet was prepared by mixing 60 wt% binder with the composition of 49.5% mol% Fe2O3, 20.5 mol% ZnO, 20 mol% NiO and 10 mol% CuO which was calcined at 775$^{\circ}C$ for 2 hr. These sheets was laminated at 250 kg/$\textrm{cm}^2$, and cofired at 900$^{\circ}C$ for 2 hr to give rise to a multilayer chip LC filter without any warpage.

  • PDF

Synthesis of Ag-Pd Electrode having Oxide Additive (산화물을 첨가한 Ag-Pd 전극의 제조)

  • Lee, Jae-Seok;Lee, Dong-Yoon;Song, Jae-Sung;Kim, Myoung-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.735-738
    • /
    • 2003
  • Downsizing electronics requires precision position control with an accuracy of sub-micron order, which demands development of ultra-fine displacive devices. Piezoelectric transducer is one of devices transferring electric field energy into mechanical energy and being capable for fine displacement control. The transducer has been widely used as fine Position control device Multilayer piezoelectric actuator, one of typical piezo-transducer, is fabricated by stacking alternatively ceramic and electrode layers several hundred times followed by cofiring process. Electrode material should be tolerable in the firing process maintaining at ceramic-sintering temperatures up to $1100{\sim}1300^{\circ}C$. Ag-Pd can be used as stable electrode material in heat treatment above $960^{\circ}C$. Besides, adding small quantity ceramic powder allow the actuator to be fabricated in a good shape by diminishing shrinkage difference between ceramic and electrode layers, resulting in avoidance of crack and delamination at and/or nearby interface between ceramic an electrode layers. This study presents synthesis of nano-oxide-added Ag/Pd powders and its feasibility to candidate material tolerable at high temperature. The powders were formed in a co-precipitation process of Ag and Pd in nano-oxide-dispersed solution where Ag and Pd precursors are melted in $HNO_3$ acid.

  • PDF

Impact analysis of composite plate by multiscale modeling (멀티스케일 모델링에 의한 복합재료 평판의 충격해석)

  • Ji Kuk Hyun;Paik Seung Hoon;Kim Seung Jo
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.67-70
    • /
    • 2004
  • An investigation was performed to study the impact damage of the laminated composite plates caused by a low- velocity foreign object with multi-scale modeling based on the concepts of Direct Numerical Simulation (DNS)[4]. In the micro-scale part, we discretize the composite plates through separate modeling of fiber and matrix for the local microscopic analysis. A micro-scalemodel was developed for predicting the initiation of the damage and the extent of the final damage as a function of material properties, laminate configuration and the impactor's mass, etc. Anda macro-scale model was developed for description of global dynamic behavior. The connection betweenmicroscopic and macroscopic is implemented by the tied interface constraints of LS-DYNA contact card. A transient dynamic finite element analysis was adopted for calculating the contact force history and the stresses and strains inside the composites during impact resulting from a point-nose impactor. The low-velocity impact events such as contact force, deformation, etc. are simulated in the macroscopic sense and the impact damages, fiber-breakage, matrix cracking and delamination etc. are examined in the microscopic sense.

  • PDF

Static and Fatigue Fracture Assessment of Hybrid Composite Joint for the Tilting Car Body (틸팅차량용 차체의 Hybrid 복합재 접합체결부의 정적 및 피로 파괴 평가)

  • Jung, Dal-Woo;Kim, Jung-Seok;Seo, Sueng-Il;Jo, Se-Hyun;Choi, Nak-Sam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.2 s.257
    • /
    • pp.166-173
    • /
    • 2007
  • Fatigue fracture behavior of a hybrid bolted joint was evaluated in comparison to the case of static fracture. Two kinds of specimens were fabricated for the mechanical tests; a hybrid bolted joint specimen for the shear test and a hybrid joint part specimen applied in the real tilting car body for the bending test. Characteristic fracture behaviors of those specimens under cyclic toads were obviously different from the case under static loads. For the hybrid bolted joint specimen, static shear loading caused the fracture of the bolt body itself in a pure shear mode, whereas cyclic shear loading brought about the fracture at the site of local tensile stress concentration. For the hybrid joint part specimen, static bend loading caused the shear deformation and fracture in the honeycomb core region, while cyclic bend loading did the delamination along the interface between composite skin and honeycomb core layers as well as the fracture of welded joint part. Experimental results obtained by static and fatigue tests were reflected in modifications of design parameters of the hybrid joint structure in the real tilting car body.

Material Properties of Squeeze Infiltrated Al Borate Whisker Reinforced Mg-3A1-2Ag-1Zn Matrix Composites (용탕가압침투법에 의한 알루미늄 보레이트 강화 Mg-3Al-2Ag-1Zn 금속복합재료의 물성)

  • Kang Hojune;Bae Gunhee;Park Yongha;Han Sangho;Park Yongho;Cho Kyungmox;Park Ikmin
    • Korean Journal of Materials Research
    • /
    • v.15 no.12
    • /
    • pp.791-795
    • /
    • 2005
  • In this study, aluminum borate whisker reinforced Mg-3Al-2Ag-1Zn matrix composites were fabricated by the squeeze infiltration technique. The purpose is to develop materials for elevated temperature applications. Microstructure observation revealed successful fabrication of the metal matrix composites, namely no cast defects such as porosity and matrix/reinforcement interface delamination etc. High temperature hardness and creep rupture properties were improved significantly with addition of Ag to the Al borate whisker reinforced Mg alloy composite. $Mg_3Ag$ phase formed during aging heat treatment could improve creep properties of the Mg matrix composites.

Control of Glass Infiltration at the Al2O3/Glass/Al2O3 Interface

  • Jo, Tae-Jin;Yeo, Dong-Hun;Shin, Hyo-Soon;Hong, Youn-Woo;Cho, Yong-Soo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.1
    • /
    • pp.32-34
    • /
    • 2011
  • A zero-shrinkage sintering process in which the shrinkage of the x-y axis is controlled to be zero is in great demand due to the high integration trend in ceramic modules. Among the zero-shrinkage sintering processes available, the glass infiltration method proposed in the preliminary study with an $Al_2O_3/Glass/Al_2O_3$ structure is one promising method. However, problems exist in regard to the glass infiltration method, including partially incomplete joining between $Al_2O_3$ and glass layers due to the precipitate of Ti-Pb rich phase during the sintering process. Therefore, we wish to solve the de-lamination problems and suggest a mechanism for delamination and the solutions in the zero-shrinkage low temperature co-fired ceramic (LTCC) layers. The de-lamination problems diminished using the Pb-BSi-O glass without $TiO_2$ in Pb-B-Ti-Si-O glass and produced a very dense zero-shrinkage LTCC.

Ultimate strength behavior of steel plate-concrete composite slabs: An experimental and theoretical study

  • Wu, Lili;Wang, Hui;Lin, Zhibin
    • Steel and Composite Structures
    • /
    • v.37 no.6
    • /
    • pp.741-759
    • /
    • 2020
  • Steel plate-concrete composite slabs provide attractive features, such as more effective loading transfer, and more cost-effective stay-in-place forms, thereby enabling engineers to design more high-performance light structures. Although significant studies in the literatures have been directed toward designing and implementing the steel plate-concrete composite beams, there are limited data available for understanding of the composite slabs. To fill this gap, nine the composite slabs with different variables in this study were tested to unveil the impacts of the critical factors on the ultimate strength behavior. The key information of the findings included sample failure modes, crack pattern, and ultimate strength behavior of the composite slabs under either four-point or three-point loading. Test results showed that the failure modes varied from delamination to shear failures under different design factors. Particularly, the shear stud spacing and thicknesses of the concrete slabs significantly affected their ultimate load-carrying capacities. Moreover, an analytical model of the composite slabs was derived for determining their ultimate load-carrying capacity and was well verified by the experimental data. Further extensive parametric study using the proposed analytical methods was conducted for a more comprehensive investigation of those critical factors in their performance. These findings are expected to help engineers to better understand the structural behavior of the steel plate-concrete composite slabs and to ensure reliability of design and performance throughout their service life.

High Velocity Impact Analysis of Kevlar29/Phenolic Composite Plate (케블라 복합재 평판의 고속충돌 특성 수치해석)

  • Ahn, Jeoung-Hee;Kweon, Jin-Hwe;Choi, Jin-Ho
    • Composites Research
    • /
    • v.22 no.2
    • /
    • pp.18-23
    • /
    • 2009
  • Failure of Kevlar29/Phenolic composite plate under high velocity impact of FSP(Fragment Simulation Projectile) is investigated using a non-linear explicit finite element code, LS-DYNA. Composite laminate and impactor are idealized by solid element and interface between laminas are modeled by tied-break element in LS-DYNA. Interaction between impactor and laminate is simulated face-to-face eroding contact algorithm. When the stress level meets a failure criteria, the layer in the element is eroded. Numerical results are verified by existing test results.

Fabrication and Electrical Insulation Property of Thick Film Glass Ceramic Layers on Aluminum Plate for Insulated Metal Substrate (알루미늄 판상에 글라스 세라믹 후막이 코팅된 절연금속기판의 제조 및 절연특성)

  • Lee, Seong Hwan;Kim, Hyo Tae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.4
    • /
    • pp.39-46
    • /
    • 2017
  • This paper presents the fabrication of ceramic insulation layer on metallic heat spreading substrate, i.e. an insulated metal substrate, for planar type heater. Aluminum alloy substrate is preferred as a heat spreading panel due to its high thermal conductivity, machinability and the light weight for the planar type heater which is used at the thermal treatment process of semiconductor device and display component manufacturing. An insulating layer made of ceramic dielectric film that is stable at high temperature has to be coated on the metallic substrate to form a heating element circuit. Two technical issues are raised at the forming of ceramic insulation layer on the metallic substrate; one is delamination and crack between metal and ceramic interface due to their large differences in thermal expansion coefficient, and the other is electrical breakdown due to intrinsic weakness in dielectric or structural defects. In this work, to overcome those problem, selected metal oxide buffer layers were introduced between metal and ceramic layer for mechanical matching, enhancing the adhesion strength, and multi-coating method was applied to improve the film quality and the dielectric breakdown property.

Shear bond strength of veneering porcelain to zirconia and metal cores

  • Choi, Bu-Kyung;Han, Jung-Suk;Yang, Jae-Ho;Lee, Jai-Bong;Kim, Sung-Hun
    • The Journal of Advanced Prosthodontics
    • /
    • v.1 no.3
    • /
    • pp.129-135
    • /
    • 2009
  • STATEMENT OF PROBLEM. Zirconia-based restorations have the common technical complication of delamination, or porcelain chipping, from the zirconia core. Thus the shear bond strength between the zirconia core and the veneering porcelain requires investigation in order to facilitate the material's clinical use. PURPOSE. The purpose of this study was to evaluate the bonding strength of the porcelain veneer to the zirconia core and to other various metal alloys (high noble metal alloy and base metal alloy). MATERIAL AND METHODS. 15 rectangular ($4\times4\times9mm$) specimens each of zirconia (Cercon), base metal alloy (Tillite), high noble metal alloy (Degudent H) were fabricated for the shear bond strength test. The veneering porcelain recommended by the manufacturer for each type of material was fired to the core in thickness of 3mm. After firing, the specimens were embedded in the PTFE mold, placed on a mounting jig, and subjected to shear force in a universal testing machine. Load was applied at a crosshead speed of 0.5mm/min until fracture. The average shear strength (MPa) was analyzed with the oneway ANOVA and the Tukey's test ($\alpha$= .05). The fractured specimens were examined using SEM and EDX to determine the failure pattern. RESULTS. The mean shear strength ($\pm\;SD$) in MPa was 25.43 ($\pm\;3.12$) in the zirconia group, 35.87 ($\pm\;4.23$) in the base metal group, 38.00 ($\pm\;5.23$) in the high noble metal group. The ANOVA showed a significant difference among groups, and the Tukey' s test presented a significant difference between the zirconia group and the metal group. Microscopic examination showed that the failure primarily occurred near the interface with the residual veneering porcelain remaining on the core. CONCLUSION. There was a significant difference between the metal ceramic and zirconia ceramic group in shear bond strength. There was no significant difference between the base metal alloy and the high noble metal alloy.