• Title/Summary/Keyword: interface charge

Search Result 470, Processing Time 0.032 seconds

Dependency of the Device Characteristics on Plasma Nitrided Oxide for Nano-scale PMOSFET (Nano-scale PMOSFET에서 Plasma Nitrided Oixde에 대한 소자 특성의 의존성)

  • Han, In-Shik;Ji, Hee-Hwan;Goo, Tae-Gyu;You, Ook-Sang;Choi, Won-Ho;Park, Sung-Hyung;Lee, Heui-Seung;Kang, Young-Seok;Kim, Dae-Byung;Lee, Hi-Deok
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.7
    • /
    • pp.569-574
    • /
    • 2007
  • In this paper, the reliability (NBTI degradation: ${\Delta}V_{th}$) and device characteristic of nano-scale PMOSFET with plasma nitrided oxide (PNO) is characterized in depth by comparing those with thermally nitrided oxide (TNO). PNO case shows the reduction of gate leakage current and interface state density compared to TNO with no change of the $I_{D.sat}\;vs.\;I_{OFF}$ characteristics. Gate oxide capacitance (Cox) of PNO is larger than TNO and it increases as the N concentration increases in PNO. PNO also shows the improvement of NBTI characteristics because the nitrogen peak layer is located near the $Poly/SiO_2$ interface. However, if the nitrogen concentration in PNO oxide increases, threshold voltage degradation $({\Delta}V_{th})$ becomes more degraded by NBT stress due to the enhanced generation of the fixed oxide charges.

Interfacial Breakdown Characteristics in XLPE/EPDM Laminate as a function of Additives (XLPE/EPDM laminate의 첨가제에 따른 전하분포특성)

  • 남진호;서광석
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2000.11a
    • /
    • pp.77-80
    • /
    • 2000
  • In order to determine what influences the interfacial charge in EPDM/XLPE laminates, We used PEA (pulsed electroacoustic) method. Interfacial properties such as space charge accumulation and breakdown strength in crosslinked polyethylene (XLPE)/ethylene-propylene-diene monomer (EPDM) laminates were investigated. Interfacial charge develops when the EPDM is laminated with XLPE. It showed the positive polarity same as the simulation in case on intercase of EPDM/XLPE. In case of coupling agent added silicone oil, as increasing the content of coupling agent, the interfacial charge decreased. Details of the results are given and their origins discussed.

  • PDF

Electronic Charge Transfer at the $Alq_3/Ba$ and $Alq_3/Au$ Interfaces by NEXAFS Spectroscopy

  • Lim, Jong-Tae;Yeom, Geun-Young
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1457-1460
    • /
    • 2007
  • To understand the electronic charge transfer from cathode to an ETL in the TEOLED, the pristine $Alq_3$ thin film and the interfaces of both $Alq_3/Ba$ and $Alq_3/Au$ were investigated by using the NEXAFS spectroscopy. The unoccupied energy state of each interface using the NEXAFS Analyses at the C and OK-edges was assigned and charge transfer from Ba to ${\pi}^{\ast}$ of $Alq_3$ was investigated in detail.

  • PDF

A study on the breakdown characteristics of power p-n junction device using field limiting ring and side insulator wall (전계제한테와 측면 유리 절연막 사용한 전력용 p-n 접합 소자의 항복 특성 연구)

  • 허창수;추은상
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.3
    • /
    • pp.386-392
    • /
    • 1996
  • Zinc-Borosilicate is used as a side insulator wall to make high breakdown voltage with one Field Limiting Ring in a power p-n junction device in simulation. It is known that surface charge density can be yield at the interface of Zinc-Borosilicate glass / silicon system. When the glass is used as a side insulator wall, surface charge varied potential distribution and breakdown voltage is improved 1090 V under the same structure.The breakdown voltage under varying the surface charge density has a limit value. When the epitaxial thickness is varied, the position of FLR doesn't influence to the breakdown characteristic not only under non punch-through structure but also under punch-through structure. (author). 7 refs., 12 figs., 2 tabs.

  • PDF

Interfacial Breakdown Characteristics in XLPE/EPDM Laminate as a function of Additives (XLPE/EPDM laminate의 첨가제에 따른 전하분포특성)

  • 남진호;서광석
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.77-80
    • /
    • 2000
  • In order to determine what influences the interfacial charge in EPDM/XLPE laminates, We used PEA (pulsed electroacoustic) method. Interfacial properties such as space charge accumulation and breakdown strength in crosslinked polyethylene (XLPE)/ethylene-propylene-diene monomer (EPDM) laminates were investigated. Interfacial charge develops when the EPDM is laminated with XLPE. It showed the positive polarity same as the simulation in case on intercase of EPDM/XLPE. In case of coupling agent added silicone oil, as increasing the content of coupling agent, the interfacial charge decreased. Details of the results are given and their origins discussed.

  • PDF

A Study on the Breakdown Characteristics of High Voltage Device using Field Limiting Ring and Side Glass Insulator Wall (전계제한테와 측면 유리 절연층을 사용한 고내압 소자의 항복 특성 연구)

  • Huh, Chang-Su;Chu, Eun-Sang
    • Proceedings of the KIEE Conference
    • /
    • 1995.07c
    • /
    • pp.1072-1074
    • /
    • 1995
  • Zinc-Borosilicate is used as a side insulastor wall to make high breakdown voltage with one Field Limiting Ring in a p-n junction. It is known that surface charge can be yield at the interface of Zinc-Borosilicate Glass/Silicon system. When the glass is used as a side insulator wall, surface charge varied potential distribution and breakdown voltage improved more than 660V without using more FLR.

  • PDF

A Study on Calculation of Capacitance Parameter for Interconnection Line in Multilayer Dielectric Media (다층 유전체 매질에서의 Interconnection Line에 대한 Capacitance Parameter 계산에 관한 연구)

  • 김한구;곽계달
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.8
    • /
    • pp.1187-1196
    • /
    • 1989
  • In this paper, a method for computing the capacitance parameter for a multi-interconnection line in a multilayered dielectric region is presented. The number of interconnection lines and the number of dielectric layers are arbitrary, and the interconnection lines are finite cross section or infinite cross section. The surface of lines and dielectric interface are divided into subsection. The surface charge density of each subsection is a constant step-pulse function for each subsection. After the solution of surface charge density is effected by the method of moments, capacitance parameter is calculated.

  • PDF

Energy-level alignment and charge injection at electrodeorganic interfaces

  • Helander, M.G.;Wang, Z.B.;Lu, Z.H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.112-114
    • /
    • 2009
  • Charge injection at electrode-organic interfaces is key to the performance, lifetime and stability of organic electronic devices. The link between fundamental material properties and the energy-level alignment at electrode-organic interfaces will be discussed. In addition the impact of the injection barrier height-a parameterization of the energylevel alignment-on device characteristics will also be discussed.

  • PDF

Mechanism for stress-induced interface degradations in ultrathin Si oxynitrides (초박막 Si oxynitride의 스트레스에 의한 계면 열화 메커니즘)

  • Lee, Eun-Cheol
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.93-93
    • /
    • 2007
  • We present a mechanism for stress-induced interface degrdadations through ab initio pseudopotential calculations. We find that N interstitials at the interface create various defects levels in the Si band gap, which range from the mid gap to the conduction band of Si. The level positions are dependent on the configuration of oxygen toms around the N interstitial. On the other hand, the mid-gap level caused by Pb center is possibly removed by substitution of a N atom for a threefold-coordinated Si atom in the defect. Our calculations explain why interface state generations are enhanced in Si oxynitride, especially near conduction band edge of Si, although densities of Pb center are reduced.

  • PDF

Photoelectrochamical characteristics of $WO_3$ on metal substrate for hydrogen production (텅스텐산화물/금속기판의 광전극 특성)

  • Go, GeunHo;Shinde, Pravin S.;Seo, SeonHee;Lee, Dongyoon;Lee, Wonjae
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.99.2-99.2
    • /
    • 2011
  • Transparent conducting oxides (TCOs) supported on glass are widely used as substrates in PEC studies for photovoltaic hydrogen generation applications However, high sheet resistane ($10{\sim}15{\Omega}/cm^2$) and fragileness of glass-supported TCO substrates are the obstacles to produce the large area PEC cells. Such internal sheet resistance is detrimental to efficient collection of photogenerated majority charge carriers at the photoactive material and electrolyte interface. Moreover, these TCO substrates are very expensive and consume about 40~60% cost of the devices. Hence, a low sheet resistance of the substrate is a key point in improving the performance of PEC devices. Metallic substrates coated with a photoactive material would be a good choice for efficient charge collection. Such metal substrates based photanodes are best candidate for large-scale phtoelectrochemical water splitting for hydrogen generation. In this study, we report the enhanced PEC performance of $WO_3$ film on metal(chemical etched, bare) substrate. It is proposed that interface between $WO_3$ and the metal substrate is responsible for efficient charge transfer and demonstrated significant improvement in the photoelectrochmical performance. X-ray diffration and FESEM suduies reveled that $WO_3$ films are monoclinic, porous, polycrystalline with average grain size of ~50nm. Photocurrent of $WO_3$ prepared on metal substrates was measured in 0.5M $H_2SO_4$ electroyte under simulated $100mW/cm^2$ illumination.

  • PDF