• Title/Summary/Keyword: interface charge

Search Result 472, Processing Time 0.022 seconds

Improvement of Hybrid EL Efficiency in Nanoparticle EL Devices by Insertion of the Layers of PVK and BaF2

  • Lee, Jun-Woo;Cho, Kyoung-Ah;Kim, Hyun-Suk;Park, Byoung-Jun;Kim, Sang-Sig;Kim, Sung-Hyun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.6 no.3
    • /
    • pp.101-105
    • /
    • 2005
  • Electroluminescence(EL) and current-voltage(I-V) characteristics of hybrid EL devices containing Pr and Mn co-doped ZnS nanoparticles were investigated in this study. For the insertion of a hole transport layer of poly (N-vinyl carbazole)(PVK), the current level became lower due to the accumulation of electrons at the interface between PVK and nanoparticles. When both PVK and buffer layer $BaF_2$ were simultaneously introduced, the enhanced EL efficiency and improved I-V characteristics were obtained. This results from the additional increase of hole injection owing to the internal field induced by the significant accumulation of electrons at the interface. The presence of buffer layer $BaF_2$ together with PVK makes it possible the charge accumulation enough to induce the sufficient internal field for further hole injection.

Use of Inner Ionomer Solution in Preparing Membrane-Electrode Assembly (MEA) for Fuel Cells and Its Characterization

  • Seo, Seok-Jun;Woo, Jung-Je;Yun, Sung-Hyun;Park, Jin-Soo;Moon, Seung-Hyeon
    • Korean Membrane Journal
    • /
    • v.10 no.1
    • /
    • pp.46-52
    • /
    • 2008
  • Optimization of ionomer solution was conducted in order to improve the performance of MEAs in PEMPC. The interface between membrane and electrodes in MEAs is crucial region determining fuel cell performance as well as ORR reaction at cathode. Through the modification of Nafion ionomer content at the interface between membrane and electrodes, an optimal content was obtained with Nafion 115 membranes. Two times higher current density was obtained with the outer Nafion sprayed MEA compared with the non-sprayed one. In addition, the symmetrical impedance spectroscopy mode (SM) exhibited that the resistances of membrane area, proton hydration, and charge transfer decreased as the outer Nafion is sprayed. From the polarization curves and SM, the highest current density and the lowest resistance was obtained at the outer ionomer content of $0.15\;mg\;cm^{-2}$.

A Case Study for SMRT Train Open Doors Control System (도시철도의 열차출입문제어에 관한 연구)

  • Won, Yu-Duck;Shim, Won-Sub
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.941-946
    • /
    • 2006
  • It followed in system development and SMRT(Seoul Metropolitan Rapid Transit Co)System reached to an automatic train operation(ATO) and driverless operation(DLM) from the manual operation due to the train driver. The train like the general bus or the car vehicle was not serial riding in a car and the Parallel concept which the numerous passenger rides in a car simultaneously occur frequently the charge of the train driver unmanned bitterly from existing manual handling was a possibility of doing, train open door control(ODM) which bites also ATO, it handles it minimized. Like this ATO/DLM, the control system which bites being a Wayside to Train communication for immediacy, it is a system of the Vital concept the immediacy of the citizen Data evil the radio information transmission and the train of the interface which is accurate from unmanned operation and, will decipher, will accomplish it will guarantee. It respects the passenger accident prevention and an air question environment improvement from subway platform and phul leys the screen door of Platform(PSD) with the fire tube frost it refers and part it treats and to sleep it does, ODM which bites is accuracy and immediacy of altitude and when seeing from the viewpoint which demands the trust of altitude, ODM system the trust of car incest interface in the equipment construction which is safe and the comparative analysis back of the system analysis against the control which bites and case study and other subway system it leads from the research which it sees and signal - train in base grudge to sleep it contributes it does.

  • PDF

Studies for Improvement in SiO2 Film Property for Thin Film Transistor (박막트랜지스터 응용을 위한 SiO2 박막 특성 연구)

  • Seo, Chang-Ki;Shim, Myung-Suk;Yi, Junsin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.6
    • /
    • pp.580-585
    • /
    • 2004
  • Silicon dioxide (SiO$_2$) is widely used as a gate dielectric material for thin film transistors (TFT) and semiconductor devices. In this paper, SiO$_2$ films were grown by APCVD(Atmospheric Pressure chemical vapor deposition) at the high temperature. Experimental investigations were carried out as a function of $O_2$ gas flow ratios from 0 to 200 1pm. This article presents the SiO$_2$ gate dielectric studies in terms of deposition rate, refrative index, FT-IR, C-V for the gate dielectric layer of thin film transistor applications. We also study defect passivation technique for improvement interface or surface properties in thin films. Our passivation technique is Forming Gas Annealing treatment. FGA acts passivation of interface and surface impurity or defects in SiO$_2$ film. We used RTP system for FGA and gained results that reduced surface fixed charge and trap density of midgap value.

A Case Study on the Decision of Aircraft Landing Charge Utilizing Information Technology (정보 시스템을 이용한 항공기 착륙요율 결정 사례 연구;잔액 보상 방식에 의한 착륙요율 결정 방법 중심)

  • Yoo, Kwang-Eui;Kim, Bong-Gyun
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.6 no.1
    • /
    • pp.147-163
    • /
    • 1998
  • The purpose of this research is to look for the best description of calculating the reasonable Landing Fee. Landing Fee is consisted one of major revenues for maintaining an airport. Traditional Landing Fee Rate has been charged based on the weight factor; Maximum take-off weight, Maximum landing weight, or Maximum authorized weight. To achieve a better reliable value of Landing Fee Rate, The elements of Noise and Peak-Time have to be considered as well as the aircraft weight. This research designs the algorithms for calculating Landing Fee Rate and also Landing Fee, based on the aircraft weight. The Network is also applied to above. That is, CGI(Common Gate Interface) is constructed to interface the terminal of calculating Landing Fee Rate, and the terminal of collecting and transmitting the data such as the Weight. The computer language on the CGI was made by C++ and PERL. The main point of this research is to integrate the airport and Information System and to construct the database which is based on the different perspective of calculating Landing Fee Rate. However, the result of the most efficient and reliable will be computed based on above. This research will broaden the range of application up to the each case of airports.

  • PDF

Analysis of Reliability for Different Device Type in 65 nm CMOS Technology (65 nm CMOS 기술에서 소자 종류에 따른 신뢰성 특성 분석)

  • Kim, Chang Su;Kwon, Sung-Kyu;Yu, Jae-Nam;Oh, Sun-Ho;Jang, Seong-Yong;Lee, Hi-Deok
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.12
    • /
    • pp.792-796
    • /
    • 2014
  • In this paper, we investigated the hot carrier reliability of two kinds of device with low threshold voltage (LVT) and regular threshold voltage (RVT) in 65 nm CMOS technology. Contrary to the previous report that devices beyond $0.18{\mu}m$ CMOS technology is dominated by channel hot carrier(CHC) stress rather than drain avalanche hot carrier(DAHC) stress, both of LVT and RVT devices showed that their degradation is dominated by DAHC stress. It is also shown that in case of LVT devices, contribution of interface trap generation to the device degradation is greater under DAHC stress than CHC stress, while there is little difference for RVT devices.

Application of the Runge Kutta Discontinuous Galerkin-Direct Ghost Fluid Method to internal explosion inside a water-filled tube

  • Park, Jinwon
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.572-583
    • /
    • 2019
  • This paper aims to assess the applicability of the Runge Kutta Discontinuous Galerkin-Direct Ghost Fluid Method to the internal explosion inside a water-filled tube, which previously was studied by many researchers in separate works. Once the explosive charge located at the inner center of the water-filled tube explodes, the tube wall is subjected to an extremely high intensity fluid loading and deformed. The deformation causes a modification of the field of fluid flow in the region near the water-structure interface so that has substantial influence on the response of the structure. To connect the structure and the fluid, valid data exchanges along the interface are essential. Classical fluid structure interaction simulations usually employ a matched meshing scheme which discretizes the fluid and structure domains using a single mesh density. The computational cost of fluid structure interaction simulations is usually governed by the structure because the size of time step may be determined by the density of structure mesh. The finer mesh density, the better solution, but more expensive computational cost. To reduce such computational cost, a non-matched meshing scheme which allows for different mesh densities is employed. The coupled numerical approach of this paper has fewer difficulties in the implementation and computation, compared to gas dynamics based approach which requires complicated analytical manipulations. It can also be applied to wider compressible, inviscid fluid flow analyses often found in underwater explosion events.

Photocatalytic Properties of Hydrothermally Synthesized Gallium Oxides at Different Phase Polymorphs (수열합성 공정으로 합성된 산화갈륨의 상변화에 따른 광촉매 특성)

  • Ryou, Heejoong;Kim, Sunjae;Lee, In Gyu;Oh, Hoon-Jung;Hwang, Wan Sik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.2
    • /
    • pp.98-102
    • /
    • 2021
  • GaOOH is obtained via hydrothermal synthesis procedure. The formed GaOOH is turned into α-Ga2O3 at 500℃ annealing. As the annealing temperatures increase the α-Ga2O3 is in part turned into β-Ga2O3 and fully turned into β-Ga2O3 after 1100℃. XPS and PL results reveal that heterojunction interface between α-Ga2O3 and β-Ga2O3 become maxim at 500℃ annealing condition, which result in the highest photocatalytic activity. The presence of heterojunction interface slows down the recombination process by separating photogenerated electron-hole pairs and thereby enhance the overall photocatalytic activity.

Study for Improved Photocurrent via High Concentrated Tin-lead Perovskite Precursor Solution (주석-납 기반 페로브스카이트 고농도 전구체 용액을 이용한 광전류 향상 연구)

  • Hyojin Hong;Seungmin Lee;Jeong Min Im;Jun Hong Noh
    • Current Photovoltaic Research
    • /
    • v.11 no.3
    • /
    • pp.96-102
    • /
    • 2023
  • Sn-Pb narrow-bandgap perovskite solar cells, which is a light-harvesting layer thicker than 1.3 micrometers, is needed to enhance the low photocurrent. The fabrication of such a thick film through solution processing is a key challenge. Here, we studied and characterized the film by using a precursor solution of increased concentration, comparing it with the universally used 1-micrometer Sn-Pb perovskite film. The increase in molar concentration clearly induced thickness enhancement, but we observed that it also created numerous voids at the interface with bottom charge transporting layer. We hypothesized that these voids might hinder the increase in photocurrent associated with thickness enhancement. By introducing methylammonium chloride (MACl), we successfully fabricated Sn-Pb perovskite film with a thickness of 1.3 micrometer and no voids. Void-controlled Sn-Pb perovskite solar cells not only demonstrated superior short-circuit current density compared to those with voids but also operated smoothly under light exposure.

First-principles investigations on helium behaviors in oxide-dispersion- strengthened nickel alloys with Hf additions

  • Yiren Wang;Fan Jia;Yong Jiang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.3
    • /
    • pp.895-901
    • /
    • 2023
  • Oxide-dispersion- strengthened nickel alloys with Hf additions are expected to present high temperature mechanical properties and durable helium resistance based on first-principles density functional theory (DFT) calculations. Energetic and charge density evaluations of the helium behaviors were performed in Ni matrix, Y2Hf2O7 oxide and the oxide/matrix interface. With the presence of coherent Y2Hf2O7 in Ni matrix, chances of helium bubbles in Ni can be greatly diminished. The helium atoms shall occupy the interfacial site initially, then diffuse into in the octahedral sites of Y2Hf2O7, and these oxide-captured He atoms prefer to separate individually. Much higher diffusion barrier of He in Y2Hf2O7 than in nickel is related to the strong hybridization between interstitial He-1s and nearest-neighboring O-2p orbitals.