DOI QR코드

DOI QR Code

Study for Improved Photocurrent via High Concentrated Tin-lead Perovskite Precursor Solution

주석-납 기반 페로브스카이트 고농도 전구체 용액을 이용한 광전류 향상 연구

  • Hyojin Hong (School of Civil, Environmental and Architectural Engineering, Korea University) ;
  • Seungmin Lee (School of Civil, Environmental and Architectural Engineering, Korea University) ;
  • Jeong Min Im (School of Civil, Environmental and Architectural Engineering, Korea University) ;
  • Jun Hong Noh (School of Civil, Environmental and Architectural Engineering, Korea University)
  • 홍효진 (건축사회환경공학부, 고려대학교) ;
  • 이승민 (건축사회환경공학부, 고려대학교) ;
  • 임정민 (건축사회환경공학부, 고려대학교) ;
  • 노준홍 (건축사회환경공학부, 고려대학교)
  • Received : 2023.08.07
  • Accepted : 2023.09.04
  • Published : 2023.09.30

Abstract

Sn-Pb narrow-bandgap perovskite solar cells, which is a light-harvesting layer thicker than 1.3 micrometers, is needed to enhance the low photocurrent. The fabrication of such a thick film through solution processing is a key challenge. Here, we studied and characterized the film by using a precursor solution of increased concentration, comparing it with the universally used 1-micrometer Sn-Pb perovskite film. The increase in molar concentration clearly induced thickness enhancement, but we observed that it also created numerous voids at the interface with bottom charge transporting layer. We hypothesized that these voids might hinder the increase in photocurrent associated with thickness enhancement. By introducing methylammonium chloride (MACl), we successfully fabricated Sn-Pb perovskite film with a thickness of 1.3 micrometer and no voids. Void-controlled Sn-Pb perovskite solar cells not only demonstrated superior short-circuit current density compared to those with voids but also operated smoothly under light exposure.

Keywords

Acknowledgement

This work was also supported by the Challengeable Future Defense Technology Research and Development Program through the Agency for Defense Development (ADD), funded by the Defense Acquisition Program Administration (DAPA) in 2022 (No. UI220006TD). This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (grant nos. RS-2023-00208467 and NRF-2022M3J1A1063226) and the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Ministry of Trade, Industry, and Energy (grant nos. 20214000000680).

References

  1. R. Prasanna, A. Gold-Parker, T. Leijtens, B. Conings, A. Babayigit, H.-G. Boyen, M. F. Toney, and M. D. McGehee, "Band Gap Tuning via Lattice Contraction and Octahedral Tilting in Perovskite Materials for Photovoltaics," Journal of the American Chemical Society, 139, 11117-11124 (2017).
  2. J. Park, J. Kim, H.-S. Yun, M. J. Paik, E. Noh, H. J. Mun, M. G. Kim, T. J. Shin, and S. I. Seok, "Controlled growth of perovskite layers with volatile alkylammonium chlorides," Nature, 616, 724-730 (2023).
  3. H.-S. Yun, H. W. Kwon, M. J. Paik, S. Hong, J. Kim, E. Noh, J. Park, Y. Lee, and S. Il Seok, "Ethanol-based green-solution processing of α-formamidinium lead triiodide perovskite layers," Nature Energy, 7, 828-834 (2022).
  4. Q. Tan, Z. Li, G. Luo, X. Zhang, B. Che, G. Chen, H. Gao, D. He, G. Ma, J. Wang, J. Xiu, H. Yi, T. Chen, and Z. He, "Inverted perovskite solar cells using dimethylacridine-based dopants," Nature (2023).
  5. H. Wang, W. Zhang, B. Wang, Z. Yan, C. Chen, Y. Hua, T. Wu, L. Wang, H. Xu, and M. Cheng, "Modulating buried interface with multi-fluorine containing organic molecule toward efficient NiOx-based inverted perovskite solar cell," Nano Energy, 111, 108363 (2023).
  6. R. Lin, Y. Wang, Q. Lu, B. Tang, J. Li, H. Gao, Y. Gao, H. Li, C. Ding, J. Wen, P. Wu, C. Liu, S. Zhao, K. Xiao, Z. Liu, C. Ma, Y. Deng, L. Li, F. Fan, and H. Tan, "All-perovskite tandem solar cells with 3D/3D bilayer perovskite heterojunction," Nature (2023).
  7. T. Li, J. Xu, R. Lin, S. Teale, H. Li, Z. Liu, C. Duan, Q. Zhao, K. Xiao, P. Wu, B. Chen, S. Jiang, S. Xiong, H. Luo, S. Wan, L. Li, Q. Bao, Y. Tian, X. Gao, J. Xie, E. H. Sargent, and H. Tan, "Inorganic wide-bandgap perovskite subcells with dipole bridge for all-perovskite tandems," Nature Energy, 8, 610-620 (2023). https://doi.org/10.1038/s41560-023-01250-7
  8. A. Al-Ashouri, E. Kohnen, B. Li, A. Magomedov, H. Hempel, P. Caprioglio, J. A. Marquez, A. B. Morales Vilches, E. Kasparavicius, J. A. Smith, N. Phung, D. Menzel, M. Grischek, L. Kegelmann, D. Skroblin, C. Gollwitzer, T. Malinauskas, M. Jost, G. Matic, B. Rech, R. Schlatmann, M. Topic, L. Korte, A. Abate, B. Stannowski, D. Neher, M. Stolterfoht, T. Unold, V. Getautis, and S. Albrecht, "Monolithic perovskite/silicon tandem solar cell with>29% efficiency by enhanced hole extraction," Science, 370, 1300-1309 (2020). https://doi.org/10.1126/science.abd4016
  9. S. Mariotti, E. Kohnen, F. Scheler, K. Sveinbjornsson, L. Zimmermann, M. Piot, F. Yang, B. Li, J. Warby, A. Musiienko, D. Menzel, F. Lang, S. Kessler, I. Levine, D. Mantione, A. Al-Ashouri, M. S. Hartel, K. Xu, A. Cruz, J. Kurpiers, P. Wagner, H. Kobler, J. Li, A. Magomedov, D. Mecerreyes, E. Unger, A. Abate, M. Stolterfoht, B. Stannowski, R. Schlatmann, L. Korte, and S. Albrecht, "Interface engineering for high-performance, triple-halide perovskite-silicon tandem solar cells," Science, 381, 63-69 (2023). https://doi.org/10.1126/science.adf5872
  10. S. Ruhle, "Tabulated values of the Shockley-Queisser limit for single junction solar cells," Solar Energy, 130, 139-147 (2016). https://doi.org/10.1016/j.solener.2016.02.015
  11. J. Wang, M. A. Uddin, B. Chen, X. Ying, Z. Ni, Y. Zhou, M. Li, M. Wang, Z. Yu, and J. Huang, "Enhancing Photostability of Sn-Pb Perovskite Solar Cells by an Alkylammonium Pseudo-Halogen Additive," Advanced Energy Materials, 13, 2204115 (2023).
  12. S. Lee, K. Choi, C. H. Min, M. Y. Woo, and J. H. Noh, "Photon recycling in halide perovskite solar cells for higher efficiencies," MRS Bulletin, 45, 439-448 (2020).
  13. S. Hu, K. Otsuka, R. Murdey, T. Nakamura, M. A. Truong, T. Yamada, T. Handa, K. Matsuda, K. Nakano, A. Sato, K. Marumoto, K. Tajima, Y. Kanemitsu, and A. Wakamiya, "Optimized carrier extraction at interfaces for 23.6% efficient tin-lead perovskite solar cells," Energy & Environmental Science, 15, 2096-2107 (2022).
  14. K. Xiao, R. Lin, Q. Han, Y. Hou, Z. Qin, H. T. Nguyen, J. Wen, M. Wei, V. Yeddu, M. I. Saidaminov, Y. Gao, X. Luo, Y. Wang, H. Gao, C. Zhang, J. Xu, J. Zhu, E. H. Sargent, and H. Tan, "All-perovskite tandem solar cells with 24.2% certified efficiency and area over 1cm2 using surface-anchoring zwitterionic antioxidant," Nature Energy, 5, 870-880 (2020).
  15. Z. Yang, Z. Yu, H. Wei, X. Xiao, Z. Ni, B. Chen, Y. Deng, S. N. Habisreutinger, X. Chen, K. Wang, J. Zhao, P. N. Rudd, J. J. Berry, M. C. Beard, and J. Huang, "Enhancing electron diffusion length in narrow-bandgap perovskites for efficient monolithic perovskite tandem solar cells," Nature Communications, 10, 4498 (2019).
  16. J. Euvrard, O. Gunawan, X. Zhong, S. P. Harvey, A. Kahn, and D. B. Mitzi, "p-Type molecular doping by charge transfer in halide perovskite", Materials Advances, 2, 2956-2965 (2021).
  17. H. Lee, S. B. Kang, S. Lee, K. Zhu, and D. H. Kim, "Progress and outlook of Sn-Pb mixed perovskite solar cells," Nano Convergence, 10, 27 (2023).
  18. R. Lin, J. Xu, M. Wei, Y. Wang, Z. Qin, Z. Liu, J. Wu, K. Xiao, B. Chen, S. M. Park, G. Chen, H. R. Atapattu, K. R. Graham, J. Xu, J. Zhu, L. Li, C. Zhang, E. H. Sargent, and H. Tan, "All-perovskite tandem solar cells with improved grain surface passivation," Nature, 603, 73-78 (2022).
  19. R. Lin, K. Xiao, Z. Qin, Q. Han, C. Zhang, M. Wei, M. I. Saidaminov, Y. Gao, J. Xu, M. Xiao, A. Li, J. Zhu, E. H. Sargent, and H. Tan, "Monolithic all-perovskite tandem solar cells with 24.8% efficiency exploiting comproportionation to suppress Sn(ii) oxidation in precursor ink," Nature Energy, 4, 864-873 (2019). https://doi.org/10.1038/s41560-019-0466-3
  20. S. Du, J. Yang, S. Qu, Z. Lan, T. Sun, Y. Dong, Z. Shang, D. Liu, Y. Yang, L. Yan, X. Wang, H. Huang, J. Ji, P. Cui, Y. Li, and M. Li, "Impact of Precursor Concentration on Perovskite Crystallization for Efficient Wide-Bandgap Solar Cells," Materials, 15, 3185 (2022).
  21. C.-W. S. Long Li, Xin-Lian Deng, Yan-Qing Wang, Guan-Nan Xiao, Ling-Ling Ni, "420 nm thick CH3NH3PbI3-xBrx capping layers for efficient TiO2 nanorod array perovskite solar cells," Chin. Phys. B, 27, 18804-018804 (2018).
  22. F. Zhang, J. Song, L. Zhang, F. Niu, Y. Hao, P. Zeng, H. Niu, J. Huang, and J. Lian, "Film-through large perovskite grains formation via a combination of sequential thermal and solvent treatment," Journal of Materials Chemistry A, 4, 8554-8561 (2016).
  23. S. Chen, X. Xiao, B. Chen, L. L. Kelly, J. Zhao, Y. Lin, M. F. Toney, and J. Huang, "Crystallization in one-step solution deposition of perovskite films: Upward or downward?," Science Advances, 7, eabb2412 (2021).
  24. C. Li, Z. Song, C. Chen, C. Xiao, B. Subedi, S. P. Harvey, N. Shrestha, K. K. Subedi, L. Chen, D. Liu, Y. Li, Y.-W. Kim, C.-s. Jiang, M. J. Heben, D. Zhao, R. J. Ellingson, N. J. Podraza, M. Al-Jassim, and Y. Yan, "Low-bandgap mixed tin-lead iodide perovskites with reduced methylammonium for simultaneous enhancement of solar cell efficiency and stability," Nature Energy, 5, 768-776 (2020).
  25. C. Jiang, Y. Xie, R. R. Lunt, T. W. Hamann, and P. Zhang, "Elucidating the Impact of Thin Film Texture on Charge Transport and Collection in Perovskite Solar Cells," ACS Omega, 3, 3522-3529 (2018). https://doi.org/10.1021/acsomega.8b00026
  26. P. Holzhey, M. Prettl, S. Collavini, C. Mortan, and M. Saliba, "Understanding the impact of surface roughness: changing from FTO to ITO to PEN/ITO for flexible perovskite solar cells," Scientific Reports, 13, 6375 (2023).
  27. Y. Zhang, Y. Li, X. Xin, Y. Wang, P. Guo, R. Wang, B. Wang, W. Huang, A. J. Sobrido, and X. Li, "Internal quantum efficiency higher than 100% achieved by combining doping and quantum effects for photocatalytic overall water splitting," Nature Energy, 8, 504-514 (2023).
  28. C. Wang, Q. Xiong, Z. Zhang, L. Meng, F. Li, L. Yang, X. Wang, Q. Zhou, W. Fan, L. Liang, S.-Y. Lien, X. Li, J. Wu, and P. Gao, "Deciphering the Reduced Loss in High Fill Factor Inverted Perovskite Solar Cells with Methoxy-Substituted Poly (Triarylamine) as the Hole Selective Contact," ACS Applied Materials & Interfaces, 14, 12640-12651 (2022).