Use of Inner Ionomer Solution in Preparing Membrane-Electrode Assembly (MEA) for Fuel Cells and Its Characterization

  • Seo, Seok-Jun (Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST)) ;
  • Woo, Jung-Je (Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST)) ;
  • Yun, Sung-Hyun (Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST)) ;
  • Park, Jin-Soo (Fuel Cell Research Center, New and Renewable Energy Research Division, Korea Institute of Energy Research (KIER)) ;
  • Moon, Seung-Hyeon (Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST))
  • Published : 2008.12.31

Abstract

Optimization of ionomer solution was conducted in order to improve the performance of MEAs in PEMPC. The interface between membrane and electrodes in MEAs is crucial region determining fuel cell performance as well as ORR reaction at cathode. Through the modification of Nafion ionomer content at the interface between membrane and electrodes, an optimal content was obtained with Nafion 115 membranes. Two times higher current density was obtained with the outer Nafion sprayed MEA compared with the non-sprayed one. In addition, the symmetrical impedance spectroscopy mode (SM) exhibited that the resistances of membrane area, proton hydration, and charge transfer decreased as the outer Nafion is sprayed. From the polarization curves and SM, the highest current density and the lowest resistance was obtained at the outer ionomer content of $0.15\;mg\;cm^{-2}$.

Keywords

References

  1. J. J. Woo, R. Q. Fu, S. J. Seo, S. H. Yun, and S. H. Moon, 'Improvement of Oxidative Stability for Non-fluorinated Membranes Prepared by Substituted Styrene Monomers', Membrane Journal, 17, 294 (2007)
  2. B. J. Chang, D. J. Kim, J. H. Kim, S. B. Lee, and H. J. Joo, 'Synthesis and Characterization of Polybenzimidazoles Containing Perfluorocyclobutane Groups for High-temperature Fuel Cell Applications', Korean Membrane J., 9, 43 (2007)
  3. M. Prasanna, E. A. Cho, H. J. Kim, I. H. Oh, T. H. Lim, and S. A. Hong, 'Performance of protonexchange membrane fuel cells using the Catalystgradient electrode technique', J. Power Sources, 166, 53 (2007) https://doi.org/10.1016/j.jpowsour.2006.12.076
  4. S. Litster and G. McLean, 'PEM fuel cell electrodes', J. Power Sources, 130, 61 (2004) https://doi.org/10.1016/j.jpowsour.2003.12.055
  5. G. Sasikumar, J. W. Ihm, and H. Ryu, 'Dependence of optimum Nafion content in catalyst layer on platinum loading', J. Power Sources, 132, 11 (2004) https://doi.org/10.1016/j.jpowsour.2003.12.060
  6. J. M. Song, S. Y. Cha, and W. M. Lee, 'Optimal composition of polymer electrolyte fuel cell electrodes determined by the AC impedance method', J. Power Sources, 94, 78 (2001) https://doi.org/10.1016/S0378-7753(00)00629-7
  7. M. Ciureanu and R. Roberge, 'Electrochemical Impedance Study of PEM Fuel Cell. Experimental Diagnostics and Modeling of Air Cathodes', J. Phys. Chem. B, 105, 3531 (2001) https://doi.org/10.1021/jp003273p
  8. X. Yuan, H. Wang, J. C. Sun, and J. Zhang, 'AC impedance technique in PEM fuel cell diagnosis - A review', Int. J. Hydrog. Energy, 32, 4365 (2007) https://doi.org/10.1016/j.ijhydene.2007.05.036
  9. S. W. Cha, R. O'Hayre, Y. I. Park, and F. B. Prinz, 'Electrochemical impedance investigation on flooding in micro-flow channels for proton exchange membrane fuel cells', J. Power Sources, 161, 138 (2006) https://doi.org/10.1016/j.jpowsour.2006.04.123
  10. Y. Sone, P. Ekdunge, and D. Simonsson, 'Proton conductivity of nafion 117 as measured by a fourelectrode ac impedance method', J. Electrochem. Soc., 143, 1254 (1996) https://doi.org/10.1149/1.1836625
  11. A. K. Meland and S. Kjelstrup, 'Three steps in the anode reaction of the polymer electrolyte membrane fuel cell. Effect of CO', J. Electroanal. Chem., 610, 171 (2007) https://doi.org/10.1016/j.jelechem.2007.07.008
  12. M. Ciureanu and H. Wang, 'Electrochemical impedance study of electrode-membrane assemblies in PEM fuel cells I. Electro-oxidation of $H_2$ and $H_2/CO$ mixtures on Pt-based gas-diffusion electrodes', J. Electrochem. Soc., 146, 4031 (1999) https://doi.org/10.1149/1.1392588
  13. A. Parthasarathy, B. Dave, S. Srinivasan, A. J. Appleby, and C. R. Martin, 'The Platinum Microelectrode/Nafion interface: An Electrochemical Impedance Spectroscopic Analysis of oxygen Reduction Kinetics and Nafion Characteristics', J. Electrochem. Soc., 139, 1634 (1992) https://doi.org/10.1149/1.2069469
  14. T. E. Springer, T. A. Zawodzinski, M. S. Wilson, and S. Gottesfeld, 'Characterization of Polymer Electrolyte Fuel Cells Using AC Impedance Spectroscopy', J. Electrochem. Soc., 143, 587 (1996) https://doi.org/10.1149/1.1836485
  15. A. G. Hombrados, L. González, M. A. Rubio, W. Agila, E. Villanueva, D. Guinea, E. Chinarro, B. Moreno, and J. R. Jurado, 'Symmetrical electrode mode for PEMFC characterization using impedance spectroscopy', J. Power Sources, 151, 25 (2005) https://doi.org/10.1016/j.jpowsour.2005.02.081
  16. A. K. Meland, S. Kjelstrup, and D. Bedeaux, 'Rate limiting proton hydration in the anode of the polymer electrolyte membrane fuel cell', J. Membr. Sci., 282, 96 (2006) https://doi.org/10.1016/j.memsci.2006.05.009
  17. O. Himanen, T. Hottinen, M. Mikkola, and V. Saarinen, 'Characterization of membrane electrode assembly with hydrogen-hydrogen cell and ac-impedance spectroscopy Part I. Experimental', Electrochim. Acta, 52, 206 (2006) https://doi.org/10.1016/j.electacta.2006.05.016
  18. B. S. Pivovar and Y. S. Kim, 'The Membrane-Electrode Interface in PEFCs I. A Method for Quantifying Membrane-Electrode Interfacial Resistance', J. Electrochem. Soc., 154, B739 (2007)
  19. S. J. Shin, J. K. Lee, H. Y. Ha, S. A. Hong, H. S. Chun, and I. H. Oh, 'Effect of catalyst ink preparation method on the performance of polymer electrolyte membrane fuel cells', J. Power Sources, 106, 146 (2002) https://doi.org/10.1016/S0378-7753(01)01045-X
  20. Z. Xie, T. Navessin, K. Shi, R. Chow, Q. Wang, D. Song, B. Andreaus, M. Eikerling, Z. Liu, and S. Holdcroft, 'Functionally Graded Cathode Layers for Polymer Electrolyte Fuel Cells', J. Electrochem. Soc., 152, A1171 (2005) https://doi.org/10.1149/1.1904990
  21. X. Yuan, J. C. Sun, M. Blanco, H. Wang, J. Zhang, and D. P. Wilkinson, 'AC impedance diagnosis of a 500W PEM fuel cell stack Part I: Stack impedance', J. Power Sources, 161, 920 (2006) https://doi.org/10.1016/j.jpowsour.2006.05.003
  22. F. Barbir, 'PEM Fuel Cells: Theory and Practice', Elsevier Academic Press (2005)
  23. J. H. Kim, H. J. Kim, T. H. Lim, and H. I. Lee, 'Dependence of the performance of a high-temperature polymer electrolyte fuel cell on phosphoric acid-doped polybenzimidazole ionomer content in cathode catalyst layer', J. Power Sources, 170, 275 (2007) https://doi.org/10.1016/j.jpowsour.2007.03.082
  24. F. Liu and C. Y. Wang, 'Optimization of cathode catalyst layer for direct methanol fuel cells Part I. Experimental investigation', Electrochim. Acta, 52, 1417 (2006) https://doi.org/10.1016/j.electacta.2006.08.003