• Title/Summary/Keyword: intelligent environments

Search Result 708, Processing Time 0.027 seconds

Implementation of Responsive Web Application for Location-based Semantic Search (위치기반 시맨틱 검색을 위한 반응형 웹 애플리케이션 구현)

  • Lee, Suhyoung;Lee, Yongju
    • The Journal of Korean Institute of Information Technology
    • /
    • v.17 no.5
    • /
    • pp.1-12
    • /
    • 2019
  • Unlike existing Open APIs, Linked Data are made as a huge intelligent base to perform high-level SPARQL queries, and it is possible to create efficiently a new content by mashuping different information from various datasets. This paper implements a responsive web application for location-based semantic search. We mashup DBpedia, a kind of Linked Data, and GoogleMap API provided by Google, and provide a semantic browser function to confirm detail information regarding retrieved objects. Our system can be used in various access environments such as PC and mobile by applying responsive web design idea. The system implemented in this paper compares functional specifications with existing systems with similar functions. The comparison results show the superiority of our system in various aspects such as using semantic, linked-based browser, and mashup function.

Salt and Pepper Noise Removal Algorithm based on Euclidean Distance Weight (유클리드 거리 가중치를 기반한 Salt and Pepper 잡음 제거 알고리즘)

  • Chung, Young-Su;Kim, Nam-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.11
    • /
    • pp.1637-1643
    • /
    • 2022
  • In recent years, the demand for image-processing technology in digital marketing has increased due to the expansion and diversification of the digital market, such as video, security, and machine intelligence. Noise-processing is essential for image-correction and reconstruction, especially in the case of sensitive noises, such as in CT, MRI, X-ray, and scanners. The two main salt and pepper noises have been actively studied, but the details and edges are still unsatisfactory and tend to blur when there is a lot of noise. Therefore, this paper proposes an algorithm that applies a weight-based Euclidean distance equation to the partial mask and uses only the non-noisy pixels that are the most similar to the original as effective pixels. The proposed algorithm determines the type of filter based on the state of the internal pixels of the designed partial mask and the degree of mask deterioration, which results in superior noise cancellation even in highly damaged environments.

Machine Learning-Based Malicious URL Detection Technique (머신러닝 기반 악성 URL 탐지 기법)

  • Han, Chae-rim;Yun, Su-hyun;Han, Myeong-jin;Lee, Il-Gu
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.32 no.3
    • /
    • pp.555-564
    • /
    • 2022
  • Recently, cyberattacks are using hacking techniques utilizing intelligent and advanced malicious codes for non-face-to-face environments such as telecommuting, telemedicine, and automatic industrial facilities, and the damage is increasing. Traditional information protection systems, such as anti-virus, are a method of detecting known malicious URLs based on signature patterns, so unknown malicious URLs cannot be detected. In addition, the conventional static analysis-based malicious URL detection method is vulnerable to dynamic loading and cryptographic attacks. This study proposes a technique for efficiently detecting malicious URLs by dynamically learning malicious URL data. In the proposed detection technique, malicious codes are classified using machine learning-based feature selection algorithms, and the accuracy is improved by removing obfuscation elements after preprocessing using Weighted Euclidean Distance(WED). According to the experimental results, the proposed machine learning-based malicious URL detection technique shows an accuracy of 89.17%, which is improved by 2.82% compared to the conventional method.

Hybrid Trust Computational Model for M2M Application Services (M2M 애플리케이션 서비스를 위한 하이브리드형 신뢰 평가 모델)

  • Kim, Yukyong
    • Journal of Software Assessment and Valuation
    • /
    • v.16 no.2
    • /
    • pp.53-62
    • /
    • 2020
  • In the end-user domain of an IoT environment, there are more and more intelligent M2M devices that provide resources to create and share application services. Therefore, it can be very useful to manage trust by transferring the role of the existing centralized service provider to end users in a P2P environment. However, in a decentralized M2M computing environment where end users independently provide or consume services, mutual trust building is the most important factor. This is because malicious users trying to build malfunctioning services can cause security problems in M2M computing environments such as IoT. In this paper, we provide an integrated analysis and approach for trust evaluation of M2M application services, and an optimized trust evaluation model that can guarantee reliability among users of the M2M community.

An optimized deployment strategy of smart smoke sensors in a large space

  • Liu, Pingshan;Fang, Junli;Huang, Hongjun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.11
    • /
    • pp.3544-3564
    • /
    • 2022
  • With the development of the NB-IoT (Narrow band Internet of Things) and smart cities, coupled with the emergence of smart smoke sensors, new requirements and issues have been introduced to study on the deployment of sensors in large spaces. Previous research mainly focuses on the optimization of wireless sensors in some monitoring environments, including three-dimensional terrain or underwater space. There are relatively few studies on the optimization deployment problem of smart smoke sensors, and leaving large spaces with obstacles such as libraries out of consideration. This paper mainly studies the deployment issue of smart smoke sensors in large spaces by considering the fire probability of fire areas and the obstacles in a monitoring area. To cope with the problems of coverage blind areas and coverage redundancy when sensors are deployed randomly in large spaces, we proposed an optimized deployment strategy of smart smoke sensors based on the PSO (Particle Swarm Optimization) algorithm. The deployment problem is transformed into a multi-objective optimization problem with many constraints of fire probability and barriers, while minimizing the deployment cost and maximizing the coverage accuracy. In this regard, we describe the structure model in large space and a coverage model firstly, then a mathematical model containing two objective functions is established. Finally, a deployment strategy based on PSO algorithm is designed, and the performance of the deployment strategy is verified by a number of simulation experiments. The obtained experimental and numerical results demonstrates that our proposed strategy can obtain better performance than uniform deployment strategies in terms of all the objectives concerned, further demonstrates the effectiveness of our strategy. Additionally, the strategy we proposed also provides theoretical guidance and a practical basis for fire emergency management and other departments to better deploy smart smoke sensors in a large space.

An Empirical Analysis of Influential Factors for Widget Interface : Extended TAM Including Attributes (Widget 인터페이스 영향요인 분석 : 속성을 고려한 확장된 기술수용모형)

  • Han, Mi-Ran;Lee, Sung-Joo;Park, Peom
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.15 no.2
    • /
    • pp.127-137
    • /
    • 2010
  • A Widget platform is acknowledged to be a next generation intelligent platform that is well suited to Web 2.0 and mobile convergence environments. With prospects of growth, examining users' perceptions of current widgets can be a valuable source of information in setting directions for Widget's future development. This study identifies user interface factors that affect widget usability and investigates a strategic approach to promoting the use of widgets by analyzing user's "intention to use" in connection with the identified interface factors. The experimental results show the consistency, intuition, minimal action, and personalization have a positive(+) effect on perceived ease of use and that personalization and design have a causal effect on perceived enjoyment. Inaddition, perceived ease of use has an influence on perceived enjoyment that, inturn, has a direct influence on intention to use. On the other hand, the hypothesis that perceived ease of use has a direct effect on intention to use was rejected.

An intelligent method for pregnancy diagnosis in breeding sows according to ultrasonography algorithms

  • Jung-woo Chae;Yo-han Choi;Jeong-nam Lee;Hyun-ju Park;Yong-dae Jeong;Eun-seok Cho;Young-sin, Kim;Tae-kyeong Kim;Soo-jin Sa;Hyun-chong Cho
    • Journal of Animal Science and Technology
    • /
    • v.65 no.2
    • /
    • pp.365-376
    • /
    • 2023
  • Pig breeding management directly contributes to the profitability of pig farms, and pregnancy diagnosis is an important factor in breeding management. Therefore, the need to diagnose pregnancy in sows is emphasized, and various studies have been conducted in this area. We propose a computer-aided diagnosis system to assist livestock farmers to diagnose sow pregnancy through ultrasound. Methods for diagnosing pregnancy in sows through ultrasound include the Doppler method, which measures the heart rate and pulse status, and the echo method, which diagnoses by amplitude depth technique. We propose a method that uses deep learning algorithms on ultrasonography, which is part of the echo method. As deep learning-based classification algorithms, Inception-v4, Xception, and EfficientNetV2 were used and compared to find the optimal algorithm for pregnancy diagnosis in sows. Gaussian and speckle noises were added to the ultrasound images according to the characteristics of the ultrasonography, which is easily affected by noise from the surrounding environments. Both the original and noise added ultrasound images of sows were tested together to determine the suitability of the proposed method on farms. The pregnancy diagnosis performance on the original ultrasound images achieved 0.99 in accuracy in the highest case and on the ultrasound images with noises, the performance achieved 0.98 in accuracy. The diagnosis performance achieved 0.96 in accuracy even when the intensity of noise was strong, proving its robustness against noise.

Quadruped Robot for Walking on the Uneven Terrain and Object Detection using Deep Learning (딥러닝을 이용한 객체검출과 비평탄 지형 보행을 위한 4족 로봇)

  • Myeong Suk Pak;Seong Min Ha;Sang Hoon Kim
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.5
    • /
    • pp.237-242
    • /
    • 2023
  • Research on high-performance walking robots is being actively conducted, and quadruped walking robots are receiving a lot of attention due to their excellent mobility and adaptability on uneven terrain, but they are difficult to introduce and utilize due to high cost. In this paper, to increase utilization by applying intelligent functions to a low-cost quadruped robot, we present a method of improving uneven terrain overcoming ability by mounting IMU and reinforcement learning on embedded board and automatically detecting objects using camera and deep learning. The robot consists of the legs of a quadruped mammal, and each leg has three degrees of freedom. We train complex terrain in simulation environments with designed 3D model and apply it to real robot. Through the application of this research method, it was confirmed that there was no significant difference in walking ability between flat and non-flat terrain, and the behavior of performing person detection in real time under limited experimental conditions was confirmed.

Impulse Noise Removal Filter using Nearest Effective Pixel Search (최근접 유효 화소의 탐색을 사용한 임펄스 잡음 제거 필터)

  • Chung, Young-Su;Jung, Hwae-Sung;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.139-141
    • /
    • 2022
  • As interest in digital video media and intelligent systems increases rapidly, technologies using video information are being combined and used in various fields such as security and artificial intelligence. Impulse noise generated during digital image processing degrades the image quality of the image and reduces the reliability of information, so it is necessary to remove it through a filter. There are SMF, AWMF, and MDBUTMF as well-known antecedent methods, but they all have limitations in achieving seamless filtering in environments with large loss of information on valid pixels due to problems with the algorithm itself. Therefore, this paper designs a median filter algorithm that applies weights reflecting the reliability of the information by searching for the nearest effective pixels present within the mask. For performance evaluation, this algorithm and the preceding algorithm were compared and analyzed using PSNR and enlarged images.

  • PDF

A Study on the i-YOLOX Architecture for Multiple Object Detection and Classification of Household Waste (생활 폐기물 다중 객체 검출과 분류를 위한 i-YOLOX 구조에 관한 연구)

  • Weiguang Wang;Kyung Kwon Jung;Taewon Lee
    • Convergence Security Journal
    • /
    • v.23 no.5
    • /
    • pp.135-142
    • /
    • 2023
  • In addressing the prominent issues of climate change, resource scarcity, and environmental pollution associated with household waste, extensive research has been conducted on intelligent waste classification methods. These efforts range from traditional classification algorithms to machine learning and neural networks. However, challenges persist in effectively classifying waste in diverse environments and conditions due to insufficient datasets, increased complexity in neural network architectures, and performance limitations for real-world applications. Therefore, this paper proposes i-YOLOX as a solution for rapid classification and improved accuracy. The proposed model is evaluated based on network parameters, detection speed, and accuracy. To achieve this, a dataset comprising 10,000 samples of household waste, spanning 17 waste categories, is created. The i-YOLOX architecture is constructed by introducing the Involution channel convolution operator and the Convolution Branch Attention Module (CBAM) into the YOLOX structure. A comparative analysis is conducted with the performance of the existing YOLO architecture. Experimental results demonstrate that i-YOLOX enhances the detection speed and accuracy of waste objects in complex scenes compared to conventional neural networks. This confirms the effectiveness of the proposed i-YOLOX architecture in the detection and classification of multiple household waste objects.