• Title/Summary/Keyword: integrated gate driver

Search Result 49, Processing Time 0.029 seconds

a-Si Gate Driver with Alternating Gate Bias to Pull-Down TFTs

  • Kim, Byeong-Hoon;Pi, Jae-Eun;Oh, Min-Woo;Tao, Ren;Oh, Hwan-Sool;Park, Kee-Chan
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1243-1246
    • /
    • 2009
  • A novel a-Si TFT integrated gate driver circuit which suppresses the threshold voltage shift due to prolonged positive gate bias to pull-down TFTs, is reported. Negative gate-to-drain bias is applied alternately to the pull-down TFTs to recover the threshold voltage shift. Consequently, the stability of the circuit has been improved considerably.

  • PDF

Ku-Band Power Amplifier MMIC Chipset with On-Chip Active Gate Bias Circuit

  • Noh, Youn-Sub;Chang, Dong-Pil;Yom, In-Bok
    • ETRI Journal
    • /
    • v.31 no.3
    • /
    • pp.247-253
    • /
    • 2009
  • We propose a Ku-band driver and high-power amplifier monolithic microwave integrated circuits (MMICs) employing a compensating gate bias circuit using a commercial 0.5 ${\mu}m$ GaAs pHEMT technology. The integrated gate bias circuit provides compensation for the threshold voltage and temperature variations as well as independence of the supply voltage variations. A fabricated two-stage Ku-band driver amplifier MMIC exhibits a typical output power of 30.5 dBm and power-added efficiency (PAE) of 37% over a 13.5 GHz to 15.0 GHz frequency band, while a fabricated three-stage Ku-band high-power amplifier MMIC exhibits a maximum saturated output power of 39.25 dBm (8.4 W) and PAE of 22.7% at 14.5 GHz.

  • PDF

a-Si TFT Integrated Gate Driver Using Multi-thread Driving

  • Jang, Yong-Ho;Yoon, Soo-Young;Park, Kwon-Shik;Kim, Hae-Yeol;Kim, Binn;Chun, Min-Doo;Cho, Hyung-Nyuck;Choi, Seung-Chan;Moon, Tae-Woong;Ryoo, Chang-Il;Cho, Nam-Wook;Jo, Sung-Hak;Kim, Chang-Dong;Chung, In-Jae
    • Journal of Information Display
    • /
    • v.7 no.3
    • /
    • pp.5-8
    • /
    • 2006
  • A novel a-Si TFT integrated gate driver circuit using multi-thread driving has been developed. The circuit consists of two independent shift registers alternating between the two modes, "wake" and "sleep". The degradation of the circuit is retarded because the bias stress is removed during the sleep mode. It has been successfully integrated in 14.1-in. XGA LCD Panel, showing enhanced stability.

ASG(Amorphous Silicon TFT Gate driver circuit) Technology for Mobile TFT-LCD Panel

  • Jeon, Jin;Lee, Won-Kyu;Song, Jun-Ho;Kim, Hyung-Guel
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.395-398
    • /
    • 2004
  • We developed an a-Si TFT-LCD panel with integrated gate driver circuit using a standard 5-MASK process. To minimize the effect of the a-Si TFT current and LC's capacitance variation with temperature, we developed a new a-Si TFT circuit structure and minimized coupling capacitance by changing vertical architecture above gate driver circuit. Integration of gate driver circuit on glass substrate enables single chip and 3-side free panel structure in a-Si TFT-LCD of QVGA(240$^{\ast}$320) resolution. And using double ASG structure the dead space of TFT-LCD panel could be further decreased.

  • PDF

A Novel Design of Low Noise On-panel TFT Gate Driver

  • Deng, Er Lang;Shiau, Miin Shyue;Huang, Nan Xiong;Liu, Don Gey
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1305-1308
    • /
    • 2008
  • In this study, we redesigned the reliable integrated on-panel display gate driver that was equipped with dual pull-down as well as controlled discharge-path structure to reduce the high voltage stress effect and realized with TSMC 0.35 um CMOS-based technology before. An improved discharge path and a low noise design are proposed for our new a-Si TFT process implementation. Our novel reliable gate driver design can make each cell of shift register to be insensitive to the coupling noise of that stage.

  • PDF

A Design of Gate Driver Circuits in DMPPT Control for Photovoltaic System (태양광 분산형 최대전력점 추적 제어를 위한 고전압 게이트 드라이버 설계)

  • Kim, Min-Ki;Lim, Shin-Il
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.19 no.3
    • /
    • pp.25-30
    • /
    • 2014
  • This paper describes the design of gate driver circuits in distributed maximum power point tracking(DMPPT) controller for photovoltaic system. For the effective DMPPT control in the existence of shadowed modules, high voltage gate driver is applied to drive the DC-DC converter in each module. Some analog blocks such as 12-b ADC, PLL, and gate driver are integrated in the SoC for DMPPT. To reduce the power consumption and to avoid the high voltage damage, a short pulse generator is added in the high side level shifter. The circuit was implemented with BCDMOS 0.35um technology and can support the maximum current of 2A and the maximum voltage of 50V.

A Fully-Integrated DC-DC Buck Converter Using A New Gate Driver (새로운 게이트 드라이버를 이용한 완전 집적화된 DC-DC 벅 컨버터)

  • Ahn, Young-Kook;Jeon, In-Ho;Roh, Jeong-Jin
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.49 no.6
    • /
    • pp.1-8
    • /
    • 2012
  • This paper presents a fully-integrated buck converter equipped with packaging inductors. These inductors include parasitic inductances of the bonding wires and lead frames in the package. They have significantly better Q factors than the best on-chip inductors implemented on silicon. This paper also proposes a low-swing gate driver for efficient regulation of high-frequency switching converters. The low-swing driver uses the voltage drop of a diode-connect transistor. The proposed converter is designed and fabricated using a $0.13-{\mu}m$ CMOS process. The fully-integrated buck converter achieves 68.7% and 86.6% efficiency for 3.3 V/2.0 V and 2.8 V/2.3 V conversions, respectively.

Amorphous Silicon Gate Driver with High Stability

  • Koo, Ja-Hun;Choi, Jae-Won;Kim, Young-Seoung;Kang, Moon-Hyo;Jang, Jin
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1271-1274
    • /
    • 2006
  • Integrated a-Si:H gate driver with high reliability has been designed and simulated. The proposed a-S:H gate driver has only one reset transistor under AC driving for P and output node. These reset transistors show much less degradation than those under DC driving. The simulation results show that the lifetime and response time are improved significantly compared with those of the prior circuit.

  • PDF

Development of LTPS-integrated gate driver circuit for OCB-mode LCD panel (OCB 모드 LCD 패널을 위한 LTPS 집적 게이트 구동 회로 개발)

  • Ryu, Jee-Youl;Noh, Seok-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.06a
    • /
    • pp.528-531
    • /
    • 2007
  • This paper presents development of a 4-inch WVCA OCB (Optical Compensated Bend)-mode display panel. The developed panel has a built-in circuit of the LTPS (low temperature poly-Si)-integrated gate driver circuit with the function of black data insertion. The function of black data insertion makes it possible to realize rapid response time of 4ms and wide viewing angle of $160^{\circ}$. We also applied the RGBW pixel structure for the brighter image with relatively low power consumption. The developed panel showed improved optical efficiency and driving capability of stable image quality for OCB mode. We developed high efficiency OCB-mode panel with built-in integrated gate driver circuit using LTPS on panel without any external driver IC.

  • PDF

Stability of Hydrogenated Amorphous Silicon TFT Driver

  • Bae, Byung-Seong;Choi, Jae-Won;Oh, Jae-Hwan;Kim, Kyu-Man;Jang, Jin
    • Journal of Information Display
    • /
    • v.6 no.1
    • /
    • pp.12-16
    • /
    • 2005
  • Gate and data drivers are essential for driving active matrix display. In this study, we integrate drivers with a-Si:H to develop a compact, better reliability and cost effective display. We design and fabricate drivers with conventional a-Si:H thin film transistors (TFTs). The output voltages are investigated according to the input voltage, temperature and operation time. Based on these studies, we propose here a new driver to prevent gate line from the floated state. For the external coupled voltage fluctuation, the proposed driver shows better stability.