• 제목/요약/키워드: integral type controller

검색결과 102건 처리시간 0.021초

반복제어기를 적용한 Active Power Decoupling 회로를 갖는 Boost Type PFC 정류기 (Boost Type PFC Rectifier with Active Power Decoupling Circuit with Repetitive Controller)

  • 황덕환;이정용;조영훈;최규하
    • 전력전자학회논문지
    • /
    • 제23권6호
    • /
    • pp.389-396
    • /
    • 2018
  • This study proposes a control method using a repetitive controller for a boost-type PFC rectifier with an APD circuit structure to improve the current distortion caused by DCM condition. Conventional proportional integral controllers have bandwidth limitations in DCM conditions. The performance improvement of the APD controller in the DCM region is verified through simulations and experiments on the compensation of harmonics by the repetitive controller.

벅형 프리레귤레이터를 가진 일정주파수 직렬공진변환기를 위한 새로운 준최적제어기 설계 (A sub-optimal controller design for constant-frequency series resonant converter with buck type pre-regulator)

  • 안희욱;고정호;윤명중
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1990년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 26-27 Oct. 1990
    • /
    • pp.96-100
    • /
    • 1990
  • Dynamic modelling and controller design technique for constant-frequency series resonant converter with buck type preregulator are mainly described in this paper. An equivalent circuit model is derived and a state equation is developed from this model. To improve the dynamic performance, a negative feedback of inductor current is added to the proportional and integral control of output voltage. Furthermore, an optimization technique with prescribed eigenvalue region is applied to the determination of feedback gains. With the presented design method, much better dynamic performance can be obtained.

  • PDF

Effect of feedback on PID controlled active structures under earthquake excitations

  • Nigdeli, Sinan Melih
    • Earthquakes and Structures
    • /
    • 제6권2호
    • /
    • pp.217-235
    • /
    • 2014
  • In this paper, different feedback control strategies are presented for active seismic control using proportional-integral-derivative (PID) type controllers. The parameters of PID controller are found by using an numerical algorithm considering time delay, maximum allowed control force and time domain analyses of shear buildings under different earthquake excitations. The numerical algorithm scans combinations of different controller parameters such as proportional gain ($K_p$), integral time ($T_i$) and derivative time ($T_d$) in order to minimize a defined response of the structure. The controllers for displacement, velocity and acceleration feedback control strategies are tuned for structures with active control at the first story and all stories. The performance and robustness of different feedback controls on time and frequency responses of structures are evaluated. All feedback controls are generally robust for the changing properties of the structure, but acceleration feedback control is the best one for efficiency and stability of control system.

고성능 유도전동기 구동을 위한 자동 튜닝 Anti-windup 기법 (Tuning-free Anti-windup Strategy for High Performance Induction Machine Drives)

  • 석줄기;이동춘
    • 전력전자학회논문지
    • /
    • 제10권1호
    • /
    • pp.29-37
    • /
    • 2005
  • 본 논문에서는 PI형태의 속도제어기를 장착한 고성능 유도전동기의 조건부 적분형 자동 튜닝 anti-windup 기법을 제안한다. 제안된 방법에서는 전동기 운전 조건에 대한 사전 정보 없이도 전동기 토오크 지령의 주파수 해석에 의해서 적분기 온/오프 시점이 결정된다. 따라서, 사용자는 anti-windup 동작을 위한 별도의 제어 상수를 설정하지 않아도 된다. 또한, 동작 조건이 변동하여도 과도 상태의 속도는 항상 최소한의 오버슈우트와 점착시간을 가지도록 동작한다. 본 기법은 속도 및 토오크 응답의 오버슈우트를 허용하지 않는 유도전동기 고성능 응용 분야에 유용하게 적용 될 수 있으며, 기본 개념은 화학 공정이나 산업용 로봇과 같은 일반 산업 응용 분야에도 확대 적용 가능하다.

선형행렬부등식 기법을 이용한 횡축형 자기 베어링 시스템의 로버스트 제어 (A Robust Control of Horizontal-Shaft Magnetic Bearing System Using Linear Matrix Inequality Technique)

  • 김창화;정병건;양주호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제25권2호
    • /
    • pp.321-330
    • /
    • 2001
  • Magnetic bearing system is frequently used for high-speed rotating machines because of its frictionless property. But the magnetic bearing system needs feedback controller for stabilization. This paper presents a robust controller design by using linear matrix inequality for magnetic bearing system which shows the control performance and robust stability under the physical parameter perturbations. To the end, the validity of the designed controller is investigated through computer simulation.

  • PDF

Robust Control of DC-DC Converter by Approximate 2DOF Digital Controller Realizing First-Order Model

  • Higuch, Kohji;Takegami, Eiji;Nakano, Kazushi;Tomioka, Satoshi;Watanabe, Kazushi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.794-799
    • /
    • 2005
  • Robust DC-DC converter which can cover extensive load changes and also input voltage changes with one controller is needed. In this paper, we propose a method for determining the parameters of 2DOF digital controller which makes the control bandwidth wider, and at the same time makes a variation of the output voltage very small at sudden changes of resistive load and the input voltage. The 2DOF digital controller whose parameters are determined by the proposed method is actually implemented on a DSP and is connected to a DC-DC converter. Experimental studies demonstrate that this type of digital controller can satisfy given specifications.

  • PDF

자기동조에 의한 PD 형 퍼지제어시스템의 응답 개선 (The Response Improvement of PD Type FLC System by Self Tuning)

  • 최한수;이경웅
    • 제어로봇시스템학회논문지
    • /
    • 제18권12호
    • /
    • pp.1101-1105
    • /
    • 2012
  • This study proposes a method for improvement of PD type fuzzy controller. The method includes self tuner using gradient algorithm that is one of the optimization algorithms. The proposed controller improves simple Takagi-Sugeno type FLC (Fuzzy Logic Control) system. The simple Takagi-Sugeno type FLC system changes nonlinear characteristic to linear parameters of consequent membership function. The simple FLC system could control the system by calibrating parameter of consequent membership function that changes the system response. While the determination on parameter of the simple FLC system works well only partially, the proposed method is needed to determine parameters that work for overall response. The simple FLC system doesn't predict the response characteristics. While the simple FLC system works just like proportional part of PID, our system includes derivative part to predict the next response. The proposed controller is constructed with P part and D part FLC system that characteristic parameter on system response is changed by self tuner for effective response. Since the proposed controller doesn't include integral part, it can't eliminate steady state error. So we include a gain to eliminate the steady state error.

오차적분 적용계수를 이용한 PD+I 퍼지제어기 (PD+I Fuzzy Controller Using Error-Accumulating Applying Factor)

  • 전경한;이연정;최봉열
    • 제어로봇시스템학회논문지
    • /
    • 제8권3호
    • /
    • pp.193-198
    • /
    • 2002
  • In this paper, we Propose a PD+I fuzzy controller using an error-accumulating applying factor. In fuzzy control, analytical study was done formerly, in which fuzzy control can be classified by PD type and PI type, and also the study for getting merits of both types was done, too. But the mixed type has a complex structure and many parameters. The proposed fuzzy controller is 2-input 2-out-put and PD type fuzzy control is used as a basic structure. And the proposed controller annihilates a steady-state error and improves transient responses because of using the error-accumulating applying factor which is determined in the real time along the current state of controlled process. Futhermore it is easy to tune the system because of decreasing the number of scaling factors and the I type controller with resetting resolves the integral wind-up problem. Finally we apply the proposed scheme to various plants and show the performance betterment.

선형연속데이터형 제어계통의 플랜트와 디지털모델의 오차자승적분지표에 의한 최적디지탈제어기의 전달함수유도 (Deriviation of the z-transfer Function of Optimal Digital Controller Using an Integral-Square-Error Criterion with the continuous-data Model in Linear Control Systems)

  • Park, Kyung-Sam
    • 대한전기학회논문지
    • /
    • 제32권6호
    • /
    • pp.211-218
    • /
    • 1983
  • In this paper, an attempt is made to match the continuous state trajectory of the digital control system with that of its continuous data model. Matching the state trajectories instead of the output responses assures that the performances of the internal variables of the plant as well as the output variables are preserved in the discretization. The mathematical tool used in this research is an extended maximum principle of the Pontryagin type, which enables one to synthesize a staircase type of optimal control signals, such as the output signal of a zero-order hold asociated with a digital controller. A general mathematical expression of the digital controller which may be used to replace the analog controller of a general system while preserving as mauch as possible the performance characteristics of the original continuous-data control system is derived in this paper.

  • PDF

Single-Stage Double-Buck Topologies with High Power Factor

  • Pires, Vitor Fernao;Silva, Jose Fernando
    • Journal of Power Electronics
    • /
    • 제11권5호
    • /
    • pp.655-661
    • /
    • 2011
  • This paper presents two topologies for single-stage single-phase double-buck type PFC converters, designed to operate at high power factor, near sinusoidal input currents and adjustable output voltage. Unlike the known buck type PFC topologies, in which the output voltage is always lower than the maximum input voltage, the proposed converters can operate at output voltages higher than the ac input peak voltage. A reduced number of switches on the main path of the current are another characteristic of the two proposed topologies. To shape the input line currents, a fast and robust controller based on a sliding mode approach is proposed. This active non-linear control strategy, applied to these converters allows high quality input currents. A Proportional Integral (PI) controller is adopted to regulate the output voltage of the converters. This external voltage controller modulates the amplitude of the sinusoidal input current references. The performances of the presented rectifiers are verified with experimental results.