• Title/Summary/Keyword: integral solution

Search Result 604, Processing Time 0.029 seconds

RETARDED NONLINEAR INTEGRAL INEQUALITIES OF GRONWALL-BELLMAN-PACHPATTE TYPE AND THEIR APPLICATIONS

  • Abdul Shakoor;Mahvish Samar;Samad Wali;Muzammil Saleem
    • Honam Mathematical Journal
    • /
    • v.45 no.1
    • /
    • pp.54-70
    • /
    • 2023
  • In this article, we state and prove several new retarded nonlinear integral and integro-differential inequalities of Gronwall-Bellman-Pachpatte type. These inequalities generalize some former famous inequalities and can be used in examining the existence, uniqueness, boundedness, stability, asymptotic behaviour, quantitative and qualitative properties of solutions of nonlinear differential and integral equations. Applications are provided to demonstrate the strength of our inequalities in estimating the boundedness and global existence of the solution to initial value problem for nonlinear integro-differential equation and Volterra type retarded nonlinear equation. This research work will ensure to open the new opportunities for studying of nonlinear dynamic inequalities on time scale structure of varying nature.

Calculation of Stress Intensity Factors Using Single-Layer Potential and Weight Function (Single-Layer 포텐셜과 가중함수를 이용한 응력강도계수의 계산)

  • 이형연;홍창선
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.4
    • /
    • pp.981-989
    • /
    • 1995
  • A new weight function approach to determine SIF(stress intensity factor) using single-layer potential has been presented. The crack surface displacement field was represented by one boundary integral term whose kernel was modified from Kelvin's fundamental solution. The proposed method enables the calculation of SIF using only one SIF solution without any modification for the crack geometries symmetric in two-dimensional plane such as a center crack in a plate with or without an internal hole, double edge cracks, circumferential crack or radial cracks in a pipe. The application procedure to those crack problems is very simple and straightforward with only one SIF solution. The necessary information in the analysis is two reference SIFs. The analysis results using present closed-form solution were in good agreement with those of the literature.

Approximate Solution for Conjugate Heat Transfer of Laminar Film Condensation on a Flat Plate (평판의 층류 막응축에서 복합열전달에 대한 근사해)

  • Lee Euk-Soo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.5
    • /
    • pp.509-518
    • /
    • 2005
  • Liquid film thickness in laminar film condensation for flow over a flat plate generally is so thin that both fluid acceleration and thermal convection within the liquid film can be neglected. An integral solution method is proposed to solve the conjugate problems of laminar film condensation and heat conduction in a solid wall. It is found that approximate solutions of the governing equations involve four physical parameters to describe the conjugate heat transfer problem for laminar film condensation. It is shown that the effects of interfacial shear. mass transfer and local heat transfer are strongly dependent on the thermo-physical properties of the working fluids and the Jacob number.

Central Crack in a Piezoelectric Disc

  • Kwon, Jong-Ho
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.9
    • /
    • pp.1549-1558
    • /
    • 2004
  • This study is concerned with the general solution of the field intensity factors and energy release rate for a Griffith crack in a piezoelectric ceramic of finite radius under combined anti-plane mechanical and in-plane electrical loading. Both electrically continuous and impermeable crack surface conditions are considered. Employing Mellin transforms and Fourier series, the problem is reduced to dual integral forms. The solution to the resulting expressions is expressed in terms of Fredholm integral equation of the second kind. The solutions are provided to study the influence of the crack length, the crack surface boundary conditions on the intensity factors and the energy release rate.

CONTINUATION THEOREM OF FRACTIONAL ORDER EVOLUTIONARY INTEGRAL EQUATIONS

  • El-Sayed, Ahmed M.A.;Aly, Mohamed A.E.
    • Journal of applied mathematics & informatics
    • /
    • v.9 no.2
    • /
    • pp.695-703
    • /
    • 2002
  • The fractional order evolutionary integral equations have been considered by first author in [6], the existence, uniqueness and some other properties of the solution have been proved. Here we study the continuation of the solution and its fractional order derivative. Also we study the generality of this problem and prove that the fractional order diffusion problem, the fractional order wave problem and the initial value problem of the equation of evolution are special cases of it. The abstract diffusion-wave problem will be given also as an application.

A poisson equation associated with an integral kernel operator

  • Kang, Soon-Ja
    • Communications of the Korean Mathematical Society
    • /
    • v.11 no.2
    • /
    • pp.367-375
    • /
    • 1996
  • Suppose the kernel function $\kappa$ belongs to $S(R^2)$ and is symmetric such that $ < \otimes x, \kappa >\geq 0$ for all $x \in S'(R)$. Let A be the class of functions f such that the function f is measurable on $S'(R)$ with $\int_{S'(R)}$\mid$f((I + tK)^{\frac{1}{2}}x$\mid$^2d\mu(x) < M$ for some $M > 0$ and for all t > 0, where K is the integral operator with kernel function $\kappa$. We show that the \lambda$-potential $G_Kf$ of f is a weak solution of $(\lambda I - \frac{1}{2} \tilde{\Xi}_{0,2}(\kappa))_u = f$.

  • PDF

Solution of Gel'fand-Levitan-Marchenko Integral Equation with Restricted Inverse Scattering Potential and Its Applications to Synthesis of Dielectric Constant Distribution (제한된 범위의 역산란 포텐셜을 갖는 Gel'fand-Levitan-Marchenko 적분방정식의 해와 유전율 분포 합성에의 응용)

  • Jang, Wan-Gyu;Jung, Hyun-Soo;Park, Eui-Joon
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.54-58
    • /
    • 2003
  • In this study, the solution of Gel'fand-Levitan-Marchenko integral equation in the inverse scattering problem is efficiently solved for arbitrarily specified spectra pattern which are reflected from the restricted potential. The procedure is based on the successive approach without iterations. This method lessens the truncation errors which plague conventional design schemes using specific windows for reflection coefficients. It is shown that the method is adequate for the synthesis of the continuously varying one-dimensional potential of the nonuniformly distributed dielectric constants.

  • PDF

An Efficient and Accurate Method for Calculating Nonlinear Diffraction Beam Fields

  • Jeong, Hyunjo;Cho, Sungjong;Nam, Kiwoong;Lee, Janghyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.2
    • /
    • pp.102-111
    • /
    • 2016
  • This study develops an efficient and accurate method for calculating nonlinear diffraction beam fields propagating in fluids or solids. The Westervelt equation and quasilinear theory, from which the integral solutions for the fundamental and second harmonics can be obtained, are first considered. A computationally efficient method is then developed using a multi-Gaussian beam (MGB) model that easily separates the diffraction effects from the plane wave solution. The MGB models provide accurate beam fields when compared with the integral solutions for a number of transmitter-receiver geometries. These models can also serve as fast, powerful modeling tools for many nonlinear acoustics applications, especially in making diffraction corrections for the nonlinearity parameter determination, because of their computational efficiency and accuracy.

Generalizations of Ramanujan's Integral Associated with Infinite Fourier Cosine Transforms in Terms of Hypergeometric Functions and its Applications

  • Qureshi, Mohammad Idris;Dar, Showkat Ahmad
    • Kyungpook Mathematical Journal
    • /
    • v.60 no.4
    • /
    • pp.781-795
    • /
    • 2020
  • In this paper, we obtain an analytical solution for an unsolved definite integral RC (m, n) from a 1915 paper of Srinivasa Ramanujan. We obtain our solution using the hypergeometric approach and an infinite series decomposition identity. Also, we give some generalizations of Ramanujan's integral RC (m, n) defined in terms of the ordinary hypergeometric function 2F3 with suitable convergence conditions. Moreover as applications of our result we obtain nine new infinite summation formulas associated with the hypergeometric functions 0F1, 1F2 and 2F3.

APPROXIMATION OF FIXED POINTS AND THE SOLUTION OF A NONLINEAR INTEGRAL EQUATION

  • Ali, Faeem;Ali, Javid;Rodriguez-Lopez, Rosana
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.5
    • /
    • pp.869-885
    • /
    • 2021
  • In this article, we define Picard's three-step iteration process for the approximation of fixed points of Zamfirescu operators in an arbitrary Banach space. We prove a convergence result for Zamfirescu operator using the proposed iteration process. Further, we prove that Picard's three-step iteration process is almost T-stable and converges faster than all the known and leading iteration processes. To support our results, we furnish an illustrative numerical example. Finally, we apply the proposed iteration process to approximate the solution of a mixed Volterra-Fredholm functional nonlinear integral equation.