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RETARDED NONLINEAR INTEGRAL INEQUALITIES OF

GRONWALL-BELLMAN-PACHPATTE TYPE AND THEIR

APPLICATIONS

Abdul Shakoor, Mahvish Samar∗, Samad Wali, and Muzammil
Saleem

Abstract. In this article, we state and prove several new retarded non-
linear integral and integro-differential inequalities of Gronwall-Bellman-

Pachpatte type. These inequalities generalize some former famous in-
equalities and can be used in examining the existence, uniqueness, bound-

edness, stability, asymptotic behaviour, quantitative and qualitative prop-

erties of solutions of nonlinear differential and integral equations. Appli-
cations are provided to demonstrate the strength of our inequalities in

estimating the boundedness and global existence of the solution to ini-

tial value problem for nonlinear integro-differential equation and Volterra
type retarded nonlinear equation. This research work will ensure to open

the new opportunities for studying of nonlinear dynamic inequalities on

time scale structure of varying nature.

1. Introduction

Integral inequalities have significant applications to the questions of exis-
tence, stability, boundedness, uniqueness, asymptotic behaviour, quantitative
and qualitative properties of solutions of nonlinear differential and integral
equations (such as [1-3] and references therein). These inequalities play a very
important role in the study of integro-differential equations. Throughout this
article, the set of real numbers is denoted by R, where as R1 = [0,∞) is the
subset of R and derivative is presented through ′. Moreover the sets of all
continuous functions and continuously differentiable functions from R1 into R1

are denoted by J(R1,R1) and J′(R1,R1), respectively.

We recall by introducing the famous inequality that has huge number of ap-
plications in the area of differential, integral and integro-differential equations.
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Theorem 1.1 (Gronwall inequality [4]). Let x : [a, a+h] → R be a continuous
function and

0 ≤ x(r) ≤
r∫

a

(b x(µ) + c) dµ, ∀ r ∈ [a, a+ h],

where a, h, b, and c are nonnegative constants. Then

0 ≤ x(r) ≤ ch exp(bh), ∀ r ∈ [a, a+ h].

A very important generalization of above inequality is established by Bell-
man which is stated below:
Theorem 1.2 (Gronwall-Bellman inequality [5]). Let x and g be nonnegative
continuous functions defined on the interval [0, h], and suppose x0 and h are
positive constants for which the inequality

x(r) ≤ x0 +

r∫
0

g(µ)x(µ)dµ, ∀ r ∈ [0, h],

holds, then

x(r) ≤ x0 exp

 r∫
0

g(µ)dµ

 , ∀ r ∈ [0, h].

A huge number of useful generalizations of above inequalities are given by
many mathematicians and scientists (see [6-17]). So, another following impor-
tant generalization of above inequalities is given by Pachpatte which has many
applications.
Theorem 1.3 (Pachpatte inequality [3]). Let x, g1, g2 ∈ J(R1,R1) be non-
negative functions and x0 be a positive constant for which the inequality

x(r) ≤ x0 +

r∫
0

g1(λ)
(
x(λ) +

λ∫
0

g2(µ)x(µ)dµ
)
dλ, ∀ r ∈ R1,

holds. Then

x(r) ≤ x0

(
1 +

r∫
0

g1(λ)exp
( λ∫

0

(
g1(µ) + g2(µ)

)
dµ
)
dλ
)
, ∀ r ∈ R1.

In 2020, Tian and Fan [18] established nonlinear integral inequality with
power and gave its application in delay integro-differential equations while El-
Deeb and Rashid [19] studied new double dynamic inequalities associated with
Leibniz integral rule on time scales in 2021. Recent articles published on delay
nonlinear dynamic inequalities of Gronwall-Bellman-Pachpatte type by [20-22]
in 2022. The objective of this article is to establish several new retarded nonlin-
ear integral and integro-differential inequalities of Gronwall-Bellman-Pachpatte
type which will extend certain former famous inequalities in [3, 5, 6] that can be
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used to examine the existence, stability, boundedness, uniqueness, asymptotic
behaviour, quantitative and qualitative properties of solutions of nonlinear dif-
ferential and integral equations. This research work will ensure to open the
new opportunities for studying of nonlinear dynamic inequalities on time scale
structure of varying nature.

The rest of this article is organized as follows: Firstly, we present some new
retarded nonlinear integral and integro-differential inequalities of Gronwall-
Bellman-Pachpatte type with a differentiable function instead of a constant
function outside the integral sign. Secondly, we give applications to demon-
strate the strength of our inequalities in estimating the boundedness and global
existence of the solution to initial value problem for nonlinear integro-differential
equation and Volterra type retarded nonlinear equation. This study will be
concluded at the end of this article.

2. Main Results

This Section begins with a generalization of a nonlinear retarded integral
inequality of Gronwall-Bellman type presented in [5, 6], which can be used in
estimating the boundedness and global existence of the solution to initial value
problem for nonlinear integro-differential equation.
Theorem 2.1. Let x, g1, g2, g3 ∈ J(R1,R1) be nonnegative functions and
l, α ∈ J′(R1,R1) be nondecreasing with l(r) ≥ 1, α(r) ≤ r on R1. If the
inequality

x(r) ≤ l(r) +

α(r)∫
0

g1(λ)x(λ)dλ+

α(r)∫
0

g2(λ)
(
xp(λ)

+

λ∫
0

g3(µ)x
q(µ)dµ

) 1
p

dλ, ∀ r ∈ R1,(1)

holds for p > q ≥ 0, then

x(r) ≤
[
(p− q)

p

α(r)∫
0

g3(λ)exp
(
(p− q)

α(r)∫
λ

(
l′
(
α−1(σ)

)
+ g1(σ)

+g2(σ)
)
dσ
)
dλ+ lp−q(0)exp

(
(p− q)

α(r)∫
0

(
l′
(
α−1(λ)

)
+g1(λ) + g2(λ)

)
dλ
)] 1

p−q

, ∀ r ∈ R1.(2)

Proof. Let y(r) be the right hand side of (1), then we note that y(r) is a
positive and nondecreasing function, x

(
α(r)

)
≤ y
(
α(r)

)
≤ y(r) and y(0) = l(0).
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Differentiating y(r), we obtain

y′(r) = l′(r) + α′(r)g1
(
α(r)

)
x
(
α(r)

)
+ α′(r)g2

(
α(r)

)
×
(
xp(α(r)) +

α(r)∫
0

g3(λ)x
q(λ)dλ

) 1
p

≤ l′(r) + α′(r)g1
(
α(r)

)
y(r) + α′(r)g2

(
α(r)

)
w(r), ∀ r ∈ R1,(3)

where

w(r) =
(
yp(r) +

α(r)∫
0

g3(λ)y
q(λ)dλ

) 1
p

, ∀ r ∈ R1,

or equivalently

wp(r) = yp(r) +

α(r)∫
0

g3(λ)y
q(λ)dλ, ∀ r ∈ R1.(4)

Thus we have x(r) ≤ y(r) ≤ w(r), and w(0) = l(0). Now differentiating the
equality (4) and using (3), we obtain

pwp−1(r)w′(r) = pyp−1(r)y′(r) + α′(r)g3
(
α(r)

)
yq
(
α(r)

)
≤ pwp−1(r)

(
l′(r) + α′(r)g1(α(r))w(r) + α′(r)g2(α(r))w(r)

)
+α′(r)g3(α(r))w

q(r),

∀ r ∈ R1. Dividing both sides by pwp−1(r), we get

w′(r) ≤ l′(r) + α′(r)g1(α(r))w(r) + α′(r)g2(α(r))w(r)

+
1

p
α′(r)g3(α(r))w

q+1−p(r), ∀ r ∈ R1.

If we let v(r) = wp−q(r), v(0) = lp−q(0) and w′(r) = 1
p−qv

′(r)wq−p+1(r), then

above inequality can be written as

1

p− q
v′(r)wq−p+1(r) ≤ l′(r) + α′(r)g1(α(r))w(r) + α′(r)g2(α(r))w(r)

+
1

p
α′(r)g3(α(r))w

q+1−p(r),

∀ r ∈ R1. As l(r) ≥ 1, w(r) ≥ 1 which implies that l′(r)
w(r) ≤ l′(r), so dividing

the above inequality by wq−p+1(r), we have

v′(r)− (p− q)
[
l′(r) + α′(r)

(
g1
(
α(r)

)
+ g2

(
α(r))

)]
v(r)

≤ (p− q)

p
α′(r)g3

(
α(r)

)
, ∀ r ∈ R1.(5)
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Applying integration from 0 to r on the above inequality, implies an estimation
for v(r) as follows:

v(r) ≤ (p− q)

p

α(r)∫
0

g3(λ)exp
(
(p− q)

α(r)∫
λ

(
l′
(
α−1(σ)

)
+ g1(σ)

+g2(σ)
)
dσ
)
dλ+ lp−q(0)exp

(
(p− q)

α(r)∫
0

(
l′
(
α−1(λ)

)
+g1(λ) + g2(λ)

)
dλ
)
, ∀ r ∈ R1.(6)

Using x(r) ≤ y(r) ≤ w(r) and v(r) = wp−q(r) in (6), we obtain required
inequality (2). This completes the proof. □

Remark 2.2. We deduce the following famous inequalities by changing the
given assumptions in Theorem 2.1:

1. If we take l(r) = x0 (a constant), g2(r) = 0 and α(r) = r, then Theorem
2.1 is converted into the well known Gronwall-Bellman inequality [5].

2. When we suppose l(r) = x0 (a constant), g1(r) = 0, and α(r) = r, then
Theorem 2.1 reduced to Theorem 2.1 [6].

Before proceeding to the next result, we first state a lemma which will be
helpful in the proof of upcoming results.

Lemma 2.3 [7]. Suppose that a ≥ 0, m ≥ n ≥ 0 and m ̸= 0, then

a
n
m ≤ n

m
K

n−m
m a+

m− n

m
K

n
m ,

for any K > 0.

Now, we state and prove another new nonlinear retarded integral inequality
which will generalize the results in [3, 5, 6].

Theorem 2.4. Let x, g1, g2, g3 ∈ J(R1,R1) be nonnegative functions and
l, α ∈ J′(R1,R1) be nondecreasing with l(r) ≥ 1, α(r) ≤ r on R1. If the
inequality

xp(r) ≤ l(r) +

α(r)∫
0

g1(λ)x(λ)dλ+

α(r)∫
0

g2(λ)
(
xp(λ)

+

λ∫
0

g3(µ)x
q(µ)dµ

) 1
p

dλ, ∀ r ∈ R1,(7)
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holds for p ≥ q ≥ 1, then

xp(r) ≤
α(r)∫
0

(
l′
(
α−1(λ)

)
+

p− 1

p
K

1
p
(
g1(λ) + g2(λ)

)
+

p− q

p
K

q
p g3(λ)

)

×exp

(
1

p

α(r)∫
λ

(
K

1−p
p
(
g1(σ) + g2(σ)

)
+ qK

q−p
p g3(σ)

)
dσ

)
dλ

+l(0)exp

(
1

p

α(r)∫
0

(
K

1−p
p
(
g1(λ) + g2(λ)

)
+ qK

q−p
p g3(λ)

)
dλ

)
,(8)

∀ r ∈ R1, for any K > 0.
Proof. Let y(r) be the right hand side of (7), then we note that y(r) is

nondecreasing and xp(r) ≤ y(r), x
(
α(r)

)
≤ y

1
p
(
α(r)

)
≤ y

1
p (r), y(0) = l(0).

After differentiating y(r), we obtain

y′(r) = l′(r) + α′(r)g1
(
α(r)

)
x
(
α(r)

)
+ α′(r)g2

(
α(r)

)
×
(
xp(α(r)) +

α(r)∫
0

g3(λ)x
q(λ)dλ

) 1
p

≤ l′(r) + α′(r)g1
(
α(r)

)
y

1
p (r) + α′(r)g2

(
α(r)

)
w

1
p (r), ∀ r ∈ R1,(9)

where

w(r) = y(r) +

α(r)∫
0

g3(λ)y
q
p (λ)dλ, ∀ r ∈ R1.(10)

Thus we have xp(r) ≤ y(r) ≤ w(r), and w(0) = l(0). Now differentiating the
equality (10) and using (9), we obtain

w′(r) = y′(r) + α′(r)g3
(
α(r)

)
y

q
p
(
α(r)

)
≤ l′(r) + α′(r)

(
g1
(
α(r)

)
+ g2

(
α(r)

))
w

1
p (r) + α′(r)g3

(
α(r)

)
w

q
p (r),(11)

∀ r ∈ R1. With the help of Lemma 2.3, the inequality (11) can be written as

w′(r) ≤ l′(r) + α′(r)
(
g1
(
α(r)

)
+ g2

(
α(r)

))(1
p
K

1−p
p w(r) +

p− 1

p
K

1
p
)

+α′(r)g3
(
α(r)

)(q
p
K

q−p
p w(r) +

p− q

p
K

q
p
)

≤ l′(r) +
α′(r)

p

(
K

1−p
p
(
g1
(
α(r)

)
+ g2

(
α(r)

))
+ qK

q−p
p g3

(
α(r)

))
w(r)

+
α′(r)

p

(
(p− 1)K

1
p
(
g1
(
α(r)

)
+ g2

(
α(r)

))
+ (p− q)K

q
p g3
(
α(r)

))
,
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∀ r ∈ R1. Rearranging the above inequality and integrating from 0 to r, implies
an estimation for w(r) as follows:

w(r) ≤
α(r)∫
0

(
l′
(
α−1(λ)

)
+

p− 1

p
K

1
p
(
g1(λ) + g2(λ)

)
+

p− q

p
K

q
p g3(λ)

)

×exp

(
1

p

α(r)∫
λ

(
K

1−p
p
(
g1(σ) + g2(σ)

)
+ qK

q−p
p g3(σ)

)
dσ

)
dλ

+l(0)exp

(
1

p

α(r)∫
0

(
K

1−p
p
(
g1(λ) + g2(λ)

)
+ qK

q−p
p g3(λ)

)
dλ

)
,(12)

∀ r ∈ R1. Using xp(r) ≤ y(r) ≤ w(r) in (12), we obtain required inequality (8).
Proof is completed. □

Remark 2.5. We observe that Theorem 2.4 generalizes the inequalities [3, 5,
6] as follows:

1. If we put l(r) = x0 (a constant), g1(r) = 0, α(r) = r and p = q = 1, then
Theorem 1.3 [3] is obtained.

2. If we take l(r) = x0 (a constant), g2(r) = 0, α(r) = r and p = 1, then
Theorem 2.4 becomes the well known Gronwall-Bellman inequality [5].

3. When we consider l(r) = x0 (a constant), g1(r) = 0, and α(r) = r, then
Theorem 2.4 is reduced to Theorem 2.2 [6].

Here, we give another new nonlinear retarded integral inequality of Gronwall-
Bellman-Pachpatte type, which can be used in analyzing the boundedness and
global existence of the solution to Volterra type retarded nonlinear differential
equations.

Theorem 2.6. Let x, g1, g2, g3 ∈ J(R1,R1) be nonnegative functions and
l, α ∈ J′(R1,R1) be nondecreasing with l(r) ≥ 1, α(r) ≤ r on R1. If the
inequality

xp(r) ≤ l(r) +

α(r)∫
0

g1(λ)x(λ)dλ+

α(r)∫
0

g2(λ)
(
xp(λ)

+

λ∫
0

g3(µ)x
q(µ)dµ

) 1
q

dλ, ∀ r ∈ R1,(13)
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holds for p ≥ q ≥ 1, then

xp(r) ≤
α(r)∫
0

(
l′
(
α−1(λ)

)
+

p− 1

p
K

1
p g1(λ) +

q − 1

q
K

1
q g2(λ) +

p− q

p
K

q
p g3(λ)

)

×exp

( α(r)∫
λ

(1
p
K

1−p
p g1(σ) +

1

q
K

1−q
q g2(σ) +

q

p
K

q−p
p g3(σ)

)
dσ

)
dλ

+l(0)exp

( α(r)∫
0

(1
p
K

1−p
p g1(λ) +

1

q
K

1−q
q g2(λ) +

q

p
K

q−p
p g3(λ)

)
dλ

)
,(14)

∀ r ∈ R1, for any K > 0 .
Proof. Let y(r) be the right hand side of (13), then we note that y(r) is

nondecreasing and xp(r) ≤ y(r), x
(
α(r)

)
≤ y

1
p
(
α(r)

)
≤ y

1
p (r), y(0) = l(0).

Differentiating y(r), we obtain

y′(r) = l′(r) + α′(r)g1
(
α(r)

)
x
(
α(r)

)
+ α′(r)g2

(
α(r)

)
×
(
xp(α(r)) +

α(r)∫
0

g3(λ)x
q(λ)dλ

) 1
q

≤ l′(r) + α′(r)g1
(
α(r)

)
y

1
p (r) + α′(r)g2

(
α(r)

)
w

1
q (r), ∀ r ∈ R1,(15)

where

w(r) = y(r) +

α(r)∫
0

g3(λ)y
q
p (λ)dλ, ∀ r ∈ R1.(16)

Thus we have xp(r) ≤ y(r) ≤ w(r), and w(0) = l(0). Now differentiating the
equality (16) and using (15), we obtain

w′(r) = y′(r) + α′(r)g3
(
α(r)

)
y

q
p
(
α(r)

)
≤ l′(r) + α′(r)g1

(
α(r)

)
w

1
p (r) + α′(r)g2

(
α(r)

)
w

1
q (r)

+α′(r)g3
(
α(r)

)
w

q
p (r), ∀ r ∈ R1.

With the help of Lemma 2.3, the above inequality can be written as

w′(r) ≤ l′(r) + α′(r)g1
(
α(r)

)(1
p
K

1−p
p w(r) +

p− 1

p
K

1
p

)
+ α′(r)g2

(
α(r)

)
×
(1
q
K

1−q
q w(r) +

q − 1

q
K

1
q

)
+ α′(r)g3

(
α(r)

)(q
p
K

q−p
p w(r) +

p− q

p
K

q
p

)
≤ l′(r) + α′(r)

(1
p
K

1−p
p g1

(
α(r)

)
+

1

q
K

1−q
q g2

(
α(r)

)
+

q

p
K

q−p
p g3

(
α(r)

))
w(r)

+α′(r)
(p− 1

p
K

1
p g1
(
α(r)

)
+

q − 1

q
K

1
q g2
(
α(r)

)
+

p− q

p
K

q
p g3
(
α(r)

))
,
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∀ r ∈ R1. Rearranging the above inequality and integrating from 0 to r gives
an estimation for w(r) as follows:

w(r) ≤
α(r)∫
0

(
l′
(
α−1(λ)

)
+

p− 1

p
K

1
p g1(λ) +

q − 1

q
K

1
q g2(λ) +

p− q

p
K

q
p g3(λ)

)

×exp

( α(r)∫
λ

(1
p
K

1−p
p g1(σ) +

1

q
K

1−q
q g2(σ) +

q

p
K

q−p
p g3(σ)

)
dσ

)
dλ

+l(0)exp

( α(r)∫
0

(1
p
K

1−p
p g1(λ) +

1

q
K

1−q
q g2(λ) +

q

p
K

q−p
p g3(λ)

)
dλ

)
,(17)

∀ r ∈ R1. Employing xp(r) ≤ y(r) ≤ w(r) in (17), we obtain desired inequality
(14). This completes the proof. □
Remark 2.7. We deduce the following famous inequalities by changing the
given assumptions in Theorem 2.6:

1. If we put l(r) = x0 (a constant), g1(r) = 0, α(r) = r and p = q = 1, then
Theorem 2.6 yields Theorem 1.3 [3].

2. Considering l(r) = x0 (a constant), g2(r) = 0, α(r) = r and p = 1, show
that Theorem 2.6 is reduced to Gronwall-Bellman inequality [5].

3. When we replace l(r) = x0 (a constant), g1(r) = 0, and α(r) = r, then
Theorem 2.6 implies Theorem 2.3 [6].

Now, we present new nonlinear retarded integro-differential inequality, which
can be used in analyzing the boundedness and global existence of the solution
to Volterra type retarded nonlinear integro-differential equation.
Theorem 2.8. Let x, x′ g1, g2, g3 ∈ J(R1,R1) be nonnegative functions and
l, α ∈ J′(R1,R1) be nondecreasing with l(r) ≥ 1, α(r) ≤ r on R1 and x(0) = 0.
If the inequality

x′(r) ≤ l(r) +

α(r)∫
0

g1(λ)x(λ)dλ+

α(r)∫
0

g2(λ)
(
xp(λ)

+

λ∫
0

g3(µ)x
q(µ)dµ

) 1
p

dλ, ∀ r ∈ R1,(18)

holds for p > q ≥ 0, then

x(r) ≤
[
p− q

p

α(r)∫
0

g3(λ)exp

(
(p− q)

α(r)∫
λ

(
α−1(σ)

(
l′
(
α−1(σ)

)
+ g1(σ)

+g2(σ)
)
+

1

α−1(σ)

)
dσ

)
dλ

] 1
p−q

, ∀ r ∈ R1.(19)
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Proof. Let y(r) be the right hand side of (18), then we note that y(r) is
nondecreasing and x(r) ≤ ry(r), x′(r) ≤ y(r), y(0) = l(0). After differentiating
y(r), we obtain

y′(r) = l′(r) + α′(r)g1
(
α(r)

)
x
(
α(r)

)
+ α′(r)g2

(
α(r)

)
×
(
xp(α(r)) +

α(r)∫
0

g3(λ)x
q(λ)dλ

) 1
p

≤ l′(r) + α′(r)g1
(
α(r)

)
ry(r) + α′(r)g2

(
α(r)

)
w(r), ∀ r ∈ R1,(20)

where

w(r) =
(
rpyp(r) +

α(r)∫
0

g3(λ)λ
qyq(λ)dλ

) 1
p

, ∀ r ∈ R1,

or equivalently

wp(r) = rpyp(r) +

α(r)∫
0

g3(λ)λ
qyq(λ)dλ, ∀ r ∈ R1.(21)

Thus we have x(r) ≤ ry(r) ≤ w(r), and w(0) = 0. Now differentiating the
equality (21) and using (20), we obtain

pwp−1(r)w′(r) = prpyp−1(r)y′(r) + prp−1yp(r) + α′(r)g3
(
α(r)

)(
α(r)

)q
yq
(
α(r)

)
≤ prwp−1(r)

(
l′(r) + α′(r)g1(α(r))w(r) + α′(r)g2(α(r))w(r)

)
+pr−1wp(r) + α′(r)g3(α(r))w

q(r), ∀ r ∈ R1.

Dividing both sides by pwp−1(r), we get

w′(r) ≤ rl′(r) +
(
α′(r)rg1(α(r)) + α′(r)rg2(α(r)) +

1

r

)
w(r)

+
1

p
α′(r)g3(α(r))w

q+1−p(r), ∀ r ∈ R1.

If we let v(r) = wp−q(r), v(0) = 0 and w′(r) = 1
p−qv

′(r)wq−p+1(r), then above

inequality can be written as

1

p− q
v′(r)wq−p+1(r) ≤ rl′(r) +

(
α′(r)rg1(α(r)) + α′(r)rg2(α(r)) +

1

r

)
w(r)

+
1

p
α′(r)g3(α(r))w

q+1−p(r), ∀ r ∈ R1.
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As l(r) ≥ 1, w(r) ≥ 1 which implies that l′(r)
w(r) ≤ l′(r), so dividing the above

inequality by wq−p+1(r), we have

v′(r) ≤ (p− q)
(
rl′(r) + α′(r)

(
rg1(α(r)) + rg2(α(r))

)
+

1

r

)
v(r)

+
p− q

p
α′(r)g3

(
α(r)

)
, ∀ r ∈ R1.

Rearranging the above inequality and integrating from 0 to r implies an esti-
mation for v(r) as follows:

v(r) ≤ p− q

p

α(r)∫
0

g3(λ)exp

(
(p− q)

α(r)∫
λ

(
α−1(σ)

(
l′
(
α−1(σ)

)
+ g1(σ)

+g2(σ)
)
+

1

α−1(σ)

)
dσ

)
dλ, ∀ r ∈ R1.(22)

Employing x(r) ≤ ry(r) ≤ w(r) and v(r) = wp−q(r) in (22), we obtain required
inequality (19). This completes the proof. □

At the end of this Section, we present following new nonlinear retarded
integro-differential inequality.

Theorem 2.9. Let x, x′ g1, g2, g3 ∈ J(R1,R1) be nonnegative functions and
l, α ∈ J′(R1,R1) be nondecreasing with l(r) ≥ 1, α(r) ≤ r on R1 and x(0) = 0.
If the inequality

x′(r) ≤ l(r) +

α(r)∫
0

g1(λ)x(λ)dλ+

α(r)∫
0

g2(λ)
(
x′(λ)

+

λ∫
0

g3(µ)x(µ)dµ
) 1

p

dλ, ∀ r ∈ R1,(23)

holds for p ≥ 1, then

x′(r) ≤
α(r)∫
0

(
l′
(
α−1(λ)

)
+

p− 1

p
K

1
p g2(λ)

)
exp

( α(r)∫
λ

(
α−1(σ)

(
g1(σ)

+g3(σ)
)
+

1

p
K

1−p
p g2(σ)

)
dσ

)
dλ+ l(0)exp

( α(r)∫
0

(
α−1(λ)

×
(
g1(λ) + g3(λ)

)
+

1

p
K

1−p
p g2(λ)

)
dλ

)
, ∀ r ∈ R1,(24)

for any K > 0.
Proof. Let y(r) be the right hand side of (23), then we note that y(r) is
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nondecreasing and x(r) ≤ ry(r), x′(r) ≤ y(r), y(0) = l(0). After differentiating
y(r), we obtain

y′(r) = l′(r) + α′(r)g1
(
α(r)

)
x
(
α(r)

)
+ α′(r)g2

(
α(r)

)
×
(
x′(α(r)) +

α(r)∫
0

g3(λ)x(λ)dλ
) 1

p

≤ l′(r) + α′(r)g1
(
α(r)

)
ry(r) + α′(r)g2

(
α(r)

)
w

1
p (r), ∀ r ∈ R1,(25)

where

w(r) = y(r) +

α(r)∫
0

g3(λ)λy(λ)dλ, ∀ r ∈ R1.(26)

Thus we have x′(r) ≤ y(r) ≤ w(r), and w(0) = y(0) = l(0). Now differentiating
the equality (26) and using (25), we obtain

w′(r) = y′(r) + α′(r)g3
(
α(r)

)
α(r)y

(
α(r)

)
≤ l′(r) + α′(r)g1

(
α(r)

)
rw(r) + α′(r)g2

(
α(r)

)
w

1
p (r)

+α′(r)g3
(
α(r)

)
rw(r), ∀ r ∈ R1.

With the help of Lemma 2.3, we have

w′(r) ≤ l′(r) + α′(r)g1
(
α(r)

)
rw(r) + α′(r)g2

(
α(r)

)(1
p
K

1−p
p w(r)

+
p− 1

p
K

1
p

)
+ α′(r)g3

(
α(r)

)
rw(r)

≤ l′(r) + α′(r)
(
rg1
(
α(r)

)
+

1

p
K

1−p
p g2

(
α(r)

)
+ rg3

(
α(r)

))
w(r)

+α′(r)
(p− 1

p
K

1
p g2
(
α(r)

))
, ∀ r ∈ R1.

Rearranging the above inequality and integrating from 0 to r gives an estima-
tion for w(r) as follows:

w(r) ≤
α(r)∫
0

(
l′
(
α−1(λ)

)
+

p− 1

p
K

1
p g2(λ)

)
exp

( α(r)∫
λ

(
α−1(σ)

(
g1(σ)

+g3(σ)
)
+

1

p
K

1−p
p g2(σ)

)
dσ

)
dλ+ l(0)exp

( α(r)∫
0

(
α−1(λ)

×
(
g1(λ) + g3(λ)

)
+

1

p
K

1−p
p g2(λ)

)
dλ

)
, ∀ r ∈ R1.(27)

Using the inequality x′(r) ≤ y(r) ≤ w(r) in (27), we obtain required inequality
(24). This completes the proof. □
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3. Applications

In some situations, the bounds and existence of solution to the initial value
problem of nonlinear integro-differential equations given by the other inequali-
ties are not directly applicable. Also, it is not possible to examine the stability
and asymptotic behavior of solutions of classes of more general retarded non-
linear differential and integral equations. However, the integral inequalities
established in this article allow us to study the global existence, uniqueness,
stability, boundedness and asymptotic behavior and other properties of so-
lutions of classes of more general retarded nonlinear differential and integral
equations. In this section, we shall discuss the existence and boundedness
behavior of solution of certain nonlinear differential and integral equations.

Consider the following initial value problem for nonlinear differential equa-
tion:{

x′(r) = l′(r) +H1(r, x) +M
(
r, x(r), H2(r, x)

)
, ∀ r ∈ R1,

x(0) = l(0),
(28)

where l(0) ̸= 0 is a constant, M ∈ J(R3
1,R), Hi ∈ J(R2

1,R), for i = 1, 2 satisfy
the following conditions

|H1(r, x)| ≤ g1(r)|x(r)|,(29)

|H2(r, x)| ≤ g3(r)|x(r)|q,(30)

|M(r, x,H2)| ≤ g2(r)
(
|x(r)|p +

r∫
0

|H2(λ, x(λ))|dλ
) 1

p

,(31)

where g1, g2 and g3 are nonnegative continuous functions on R1, and p > q ≥ 0.

Corollary 3.1. Consider the initial value problem for nonlinear differential
equation (28) and suppose that H1, H2 and M satisfy the conditions (29), (30)
and (31) respectively. Then all solutions of (28) exist and are bounded on R1.
Proof. Integrating (28) from 0 to r, we obtain

x(r) = l(r) +

r∫
0

H1(λ, x)dλ+

r∫
0

M
(
λ, x(λ), H2(λ, x)

)
dλ,∀r ∈ R1.(32)
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Using (29), (30) and (31) in (32), we get

|x(r)| ≤ |l(r)|+
r∫

0

g1(λ)|x(λ)|dλ+

r∫
0

g2(λ)
(
|x(λ)|p +

λ∫
0

g3(µ)|x(µ)|qdµ
) 1

p dλ

≤ |l(r)|+
α(r)∫
0

g1(α
−1(λ))

α′(α−1(λ))
|x(λ)|dλ+

α(r)∫
0

g2(α
−1(λ))

α′(α−1(λ))

(
|x(λ)|p

+

λ∫
0

g3(µ)|x(µ)|qdµ
) 1

p

dλ, ∀ r ∈ R1.

If above inequality holds for p > q ≥ 0 , then as an application of Theorem 2.1,
we obtain

|x(r)| ≤
[
(p− q)

p

α(r)∫
0

1

α′(α−1(λ))
g3(λ)exp

( α(r)∫
λ

(p− q)

α′(α−1(λ))

(
l′
(
α−1(σ)

)

+g1(σ) + g2(σ)
)
dσ
)
dλ+ |lp−q(0)|exp

(
(p− q)

α(r)∫
0

1

α′(α−1(λ))

×
(
l′
(
α−1(λ)

)
+ g1(λ) + g2(λ)

)
dλ
)] 1

p−q

, ∀ r ∈ R1.

This shows that the solution of the system (28) exists and is bounded on R1.
Proof is completed. □

Now we consider the following Volterra type retarded nonlinear equation
which arises very often in various problems such as describing physical processes
with after effects:

x5(r) = l(r) +

α(r)∫
0

H1(λ, x(λ))dλ+

α(r)∫
0

M
(
λ,
(
x5(λ),

λ∫
0

H2(σ, x
4(σ))dσ

) 1
4

)
dλ, ∀ r ∈ R1,(33)

where l(r) = r2 is nondecreasing on R1, M ∈ J(R3
1,R), Hi ∈ J(R2

1,R), for
i = 1, 2 and satisfy the following conditions

H1(r, x) ≤ erx(r), ∀ r ∈ R1,(34)

H2(r, x
4) ≤ sin rx4(r), ∀ r ∈ R1,(35)
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M
(
r,
(
x5,

r∫
0

H2dλ
) 1

4

)
≤ cos r

(
x5(r) +

r∫
0

H2dλ
) 1

4

, ∀ r ∈ R1.(36)

Corollary 3.2. Consider the Volterra type retarded nonlinear equation (33)
and suppose that H1, H2 and M satisfy the conditions (34), (35) and (36)
respectively. Then we examine the boundedness and existence on R1 of the
solution of (33).
Proof. By using (34), (35) and (36) in (33), we obtain

x5(r) ≤ r2 +

α(r)∫
0

eλx(λ)dλ+

α(r)∫
0

cosλ
(
x5(λ) +

λ∫
0

sinσx4(σ)dσ
) 1

4

dλ,(37)

∀ r ∈ R1. The inequality (37) is the particular form of (13), and also inequality
(37) satisfy all the conditions of Theorem 2.6. So, as an application of Theorem
2.6, we obtain

x5(r) ≤
α(r)∫
0

(
2α−1(λ) +

4

5
K

1
5 eλ +

3

4
K

1
4 cosλ+

1

5
K

4
5 sinλ

)

×exp

( α(r)∫
λ

(1
5
K

−4
5 eσ +

1

4
K

−3
4 cosσ +

4

5
K

−1
5 sinσ

)
dσ

)
dλ,(38)

∀ r ∈ R1, for any K > 0.

In particularly, if K = 1, then from (38), we get

x5(r) ≤
α(r)∫
0

(
2α−1(λ) +

4

5
eλ +

3

4
cosλ+

1

5
sinλ

)

×exp

( α(r)∫
λ

(1
5
eσ +

1

4
cosσ +

4

5
sinσ

)
dσ

)
dλ, ∀ r ∈ R1,(39)

which gives boundedness and global existence for x on R1. This completes the
proof. □

4. Conclusion

Retarded nonlinear integral and integro-differential inequalities of Gronwall-
Bellman-Pachpatte type are studied in this research work, and many fresh and
existing famous inequalities might be achieved by taking appropriate selection
of parameters. Moreover, the integral inequalities established in this article
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permit us to analyze the existence, uniqueness, stability, boundedness and as-
ymptotic behavior and other properties of solutions of classes of more general
retarded nonlinear differential and integral equations. Many renowned and ex-
isting important special cases can be explored on the basis of different choices
of parameters (see remarks 2.2, 2.5 and 2.7) from our integral inequalities of
this article. So, these inequalities can handle the problems of nonlinear partial
differential equations in applied.

Acknowledgements. The authors would like to thank the editor and the
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