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Abstract This study develops an efficient and accurate method for calculating nonlinear diffraction beam fields 
propagating in fluids or solids. The Westervelt equation and quasilinear theory, from which the integral solutions 
for the fundamental and second harmonics can be obtained, are first considered. A computationally efficient 
method is then developed using a multi-Gaussian beam (MGB) model that easily separates the diffraction effects 
from the plane wave solution. The MGB models provide accurate beam fields when compared with the integral 
solutions for a number of transmitter-receiver geometries. These models can also serve as fast, powerful modeling 
tools for many nonlinear acoustics applications, especially in making diffraction corrections for the nonlinearity 
parameter determination, because of their computational efficiency and accuracy.
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1. Introduction

Nonlinear acoustics is widely applied for the 
purpose of characterizing damage states and 
material properties in solids and fluids. The 
acoustic nonlinearity parameter is one of the 
quantitative indicators that is known to be more 
sensitive to certain damages and material states 
than traditional linear parameters such as velocity, 
attenuation. For solids, acoustic nonlinearity has 
been used to characterize material damage and 
microstructural changes [1-3]. For fluids, studies 
of acoustic nonlinearity were mainly focused to 
harmonic imaging of biological tissues [4,5]. In 
water, acoustic nonlinearity plays an important 
role in the development of parametric arrays for 
underwater sonar imaging [6]. 

The finite amplitude method is the most 
widely used technique for determination of the 
acoustic nonlinearity parameter  of solids and 
fluids. In general, the propagation of a finite- 
amplitude plane wave through a nonlinear medium 
introduces distortions, resulting in the generation 

of higher harmonics. The nonlinearity parameter 
  is based on the plane wave solution of 
nonlinear wave equation, and is determined from 
the ratio of amplitudes of the fundamental and 
that of the second harmonic generated in the 
medium [7]. However, the plane wave assumption 
generally does not hold in reality, therefore 
beam diffraction effects should be taken into 
account for accurate determination of nonlinearity 
parameter. 

The purpose of this study is to develop an 
efficient and precise modeling technique for 
calculating nonlinear diffraction beam fields. The 
model developed here will be extended further 
to derive and then apply explicit diffraction 
corrections for accurate determination of the 
nonlinearity parameter in fluids or solids. The 
second part will be published in a separate 
companion paper [8]. Attenuation effects are not 
considered in this study, and will be studied in 
a separate paper.  

We need a three-dimensional nonlinear 
equation to predict the actual acoustic behavior 
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frequently encountered in typical finite amplitude 
experiments for harmonic generation. The model 
equation should be able to account for non- 
linearity and diffraction. For this purpose, the 
Westervelt equation [9,10] is used in this study. 
It is described in three dimensional coordinates, 
as opposed to the two cylindrical coordinates of 
the Khokholov-Zabolotskaya-Kuznetsov (KZK) 
equation [9]. Moreover, its linear equation yields 
the Rayleigh-Sommerfeld integral [10], which is 
valid for all axial ranges. The first order KZK 
solution, however, is not valid for small axial 
distances  ≤  [11]. Recently, the 
Westervelt equation was used to calculate the 
difference frequency fields of a parametric 
array [10]. 

In this work, integral solutions are first 
derived from the Westervelt equation for the 
fundamental and second harmonic beam fields 
based on the quasilinear theory. Multi-layer 
integral expressions are obtained, and calculations 
of the acoustic fields are therefore computa- 
tionally very heavy, especially for the second 
harmonic. To provide a means for fast 
calculations of secondary acoustic fields, we 
employ an approximate analytical model for the 
primary field with the use of a multi-Gaussian 
beam (MGB) method. With the use of MGB 
model in paraxial approximation, the fifth-layer 
integral of the second harmonic is reduced to a 
one-dimensional form. The MGB model has 
been widely used in NDE community for fast 
and accurate calculations of ultrasonic beam 
fields radiated from planar or focused 
transducers. Most of the previous studies on 
MGB models were limited to linear wave field 
calculations [12-16]. Labat et al. [17] used the 
superposition of Gaussian beams to calculate the 
fundamental and second harmonic fields based 
on the KZK equation. Here, we extend the 
MGB model to describe the second harmonic 
beam fields under the quasilinear and paraxial 
approximation.

2. Westervelt Equation and Quasilinear Solution

To capture the main features of the 
combined effects of diffraction, and nonlinearity 
in models of finite amplitude sound beams, one 
needs theoretical formulations that describe 
nonlinear acoustic fields in two- or three- 
dimension. Model equations for sound fields are 
available with appropriate approximations of the 
full second-order wave equation [9]. One of 
such equations is the Westervelt equation. This 
equation assumes that cumulative nonlinear 
effects dominate noncumulative (local) nonlinear 
effects. This assumption is valid in most cases 
of practical interest. As a general rule, except 
within one wavelength from the source, local 
effects can be ignored for problems involving 
progressive directional sound beams [9]. 

Neglecting medium absorption, the Westervelt 
equation is given by

2 2 2
2

2 2 4 2

1 fp pp
c t c t

β
ρ

∂ ∂
∇ − = −

∂ ∂
(1)

where  is the acoustic pressure,  is the 
longitudinal sound velocity of fundamental wave, 
 is the density. In Eq. (1), the operator ∇ is 
the Laplacian in the (, , ) space, and   is 
taken as the direction of propagation. The term 
in the right-hand side describes the effect of 
acoustic nonlinearity. Thus, the Westervelt 
equation accounts for the combined effects of 
diffraction and nonlinearity in progressive 
directional sound beams. In Eq. (1),  is the 
acoustic nonlinearity parameter of fluids, which 
is given by    where   
and  are the second-order and third-order 
elastic constants. Eq. (1) can be applicable to 
isotropic solids with further assumption and by 
replacing  with , where  is the 
nonlinearity parameter of solids defined by 
   . Hereafter, we shall 
suppress the subscript  .   
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When nonlinear effects are weak, Eq. (1) can be 
efficiently solved following the quasilinear 
theory. The quasilinear solution is assumed to 
have the form

1 2p p p= + (2)

where   is the linear solution of Eq. (1) for 

the pressure at a fundamental frequency  , and 
  is a small correction to   at the second 

harmonic frequency . ≪   is assumed 
in nonlinear interactions. 
Assuming that the pressure is harmonic in time,

( )( , ) Re ( , )exp( ) , 1,  2n np t p in t nω ω= − =x x (3)

where  (x, ) are complex-valued pressure 

amplitudes and   is the angular frequency of 
the propagating wave. Substitution of Eqs. (2) 
and (3) into Eq. (1) yields the following 
quasilinear system of equations for (x, ) and 

(x, ):

2 2
1 1 0p k p∇ + = (4)

2
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c
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where     is the wave number of the 
primary wave. For the source condition, we take

1( , , 0, ) ( , , 0, ) exp( )p x y t p x y i tω ω′ ′ ′ ′= − (6)

where ′′  is an arbitrary distribution 
that takes into account both amplitude and 
phase. It is also assumed that the source does 
not radiate at the second-harmonic frequency, 
that is, ′′  .

Since Eqs. (4) and (5) form Helmholtz 
equations, the Green's function therefore has to 
solve these partial differential equations. We 
define the Green’s function  ′′′   
here, at frequency , to be the solution of the 
following inhomogeneous equation

( ) ( )22
n nG nk G δ ′∇ + =− −x x (7)

where the right-hand side is the three 
dimensional Dirac delta function in Cartesian 
coordinates. Primed coordinates correspond to 
locations of source points. The Green’s function 
can be obtained as

1
1( , , | , ,0) exp( )

4
G x y z x y ikr

rπ
′ ′ = (8)

2
1( , , | , , ) exp( 2 )

4
G x y z x y z i kR

Rπ
′ ′ ′ = (9)

where 2 2 2( ) ( )r x x y y z′ ′= − + − +  and
2 2 2( ) ( ) ( )R x x y y z z′ ′ ′= − + − + − .                  

Solutions of Eqs. (4) and (5) are now 
obtained by integrating over the product of the 
Green’s function and appropriate source function 
to sum up the contributions from all source 
points. For  , the source function is 

′′ , and the integration is performed 
over the transducer surface elements 
′ ′′  in the plane ′   . The source 
function for   is the right-hand side of Eq. (5), 

which is proportional to the volume distribution


(x', ), and the integral is performed over the 

volume elements ′ ′′′ . We thus 
obtain

1 1 1( , ) 2 ( , ,0) ( , , | , ,0) p ik p x y G x y z x y dx dyω
+∞ +∞

−∞ −∞
′ ′ ′ ′ ′ ′= − ∫ ∫x
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c
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ρ
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(11)

The source condition ′′   
establishes the lower integration limit ′    in 
Eq. (11). On the basis of Eq. (11), the 
second-harmonic generation in the quasilinear 
approximation is interpreted as a sound field 
radiated by a volume distribution of virtual 
sources whose strengths are proportional to    


(x').
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When a constant pressure   is prescribed 

over the surface ′  of a circular piston 
transducer of radius , where

2 2 2
0

1 2 2 2

( )       
( 0 )

0               
p x y a

p x , y ,z ,
x y a

ω
ω

′ ′⎧ + ≤′ ′ ′ = = ⎨ ′ ′+ >⎩
(12)

Substitution of Eq. (8) into Eq. (10) provides 
the Rayleigh-Sommerfeld (RS) integral [14]

0
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2
ikp ikrp dx dy

r
ω

π
+∞ +∞

−∞ −∞
′ ′= − ∫ ∫x (13)

 

The RS integral is the exact solution to the 
linear wave equation, Eq. (4), and represents the 
transducer radiation as a superposition of 
spherical waves radiating from point sources 
distributed on the plane ′   .

Similarly, substitution of Eq. (9) into Eq. 
(11) yields the quasilinear solution for the 
second harmonic pressure

2
2

2 12 0

exp( 2 )( , ) ( , , )  
2

zk i kRp p x y z dx dy dz
c R

βω
πρ

+∞ +∞

−∞ −∞
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(14)

The Green’s function used in this integral 
includes contribution of the element 
′ ′′′  of the virtual source formed by 
the primary field. Eq. (14) also serves as an 
exact solution to the second harmonic wave 
equation in the quasilinear theory since the 
exact linear solution   is used in the right 

hand-side of Eq. (11) to calculate an additional 
pressure perturbation due to nonlinearity.

Eq. (14) for calculation of   together with 

Eq. (13) represents the fifth-fold integral that is 
very time consuming to be calculated numeri- 
cally. For this reason, an approximate analytic 
solution of integral (14) is needed under the 
high-frequency approximation of primary field. 
For this purpose, a multi-Gaussian beam (MGB) 
model can be employed as an efficient alterna- 
tive method for accurate numerical calculations. 

3. Multi-Gaussian Beam(MGB) Models

Multi-Gaussian beam (MGB) models have 
been widely used to describe the propagation of 
ultrasonic beams from planar or focused trans- 
ducers [12-16]. One of the attractive features of 
MGB models is that they are numerically very 
efficient. This is because these models rely on 
the superposition of a small number (15-25) of 
Gaussian beams whose properties can be 
described in analytical terms. 

Another feature of MGB models, as will be 
seen later, is that they provide closed form 
solutions for diffraction corrections. Since the 
Westervelt equation and the quasilinear theory 
provide integral solutions, it is not easy to 
separate diffraction effects from the plane wave 
solution. With MGB models, however, the 
effects of diffraction of the nonlinear acoustic 
fields, as they travel from the source transducer 
to the receiver transducer, can be obtained 
explicitly. Most of the previous studies on MGB 
models were limited to linear wave field 
calculations. Here, we extend the MGB model 
to describe the second harmonic wave fields.

According to Wen and Breazeale[18], on the 
face of transducer of radius a located at the 
plane ′   , the pressure field can be 
approximated by a sum of Gaussians 

2 2 2
1 0

1

( , ,0) exp( ( ) / )
N

m m
m

p x y p A B x y a
=

′ ′ ′ ′= − +∑ (15)

where   is the constant pressure on the 

transducer surface, and   and   are a set 

of complex-valued expansion coefficients [18-20]. 
If we assume that ≫  , the beam is 

reasonably directional and localized in the 
vicinity of the z axis, the Green’s function in 
Eq. (8) can be simplified into the paraxial 
approximation as

2 2exp( ) 1 ( ) ( )exp ( )
2 2

ik r x x y yik z
r z z z

⎡ ⎤′ ′⎧ ⎫− −
≈ + +⎨ ⎬⎢ ⎥

⎩ ⎭⎣ ⎦
(16)
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Substitution of Eqs. (15) and (16) into Eq. 
(13), after some algebra with the use of a 
known integral formula, 

( )
2

2exp exp
4
bax bx dx

a a
π+∞

−∞

⎛ ⎞
− + = ⎜ ⎟

⎝ ⎠
∫ , (17)

will yield the MGB model for the primary beam 
field given by

2 20
1

1

exp( )( , )  exp ( )
1 2 1

N
m m R

m m R m R

p A ikz i iB cDp x y
iB z D iB z D

ωω
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⎞⎛
= + ⎟⎜+ +⎝ ⎠
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(18)

where   
 is the Rayleigh distance. Eq. 

(18) can be rearranged to be written in the form

[ ] 2 2
1 0

1

( , ) exp( )  exp ( )  
1 2 1

N
m m R

m m R m R

A i iB cDp p ikz x y
iB z D iB z D

ωω
=

⎡ ⎤⎞⎛
= +⎢ ⎥⎟⎜+ +⎝ ⎠⎣ ⎦

∑x

(19)

where the first term represents the fundamental 
pressure of a pure plane wave, the second term 
the diffraction correction term. 

Now substitution of Eq. (19) into Eq. (14), 
after some algebra, provides the MGB model for 
the second harmonic beam field

2
0

2 2 0
1 1

2 2

exp(2 )( , )
(2 ) ( 2 )

2   exp ( )( )
(2 ) ( 2 )

N Nz
m n

m n a a b

a b

a a b

kp A A ikzp
c B z B B z z

B B zik x y dz
B z B B z z

βω
ρ = =

= ×
′+ + −

⎧ ⎫′− ′+⎨ ⎬′+ + −⎩ ⎭

∑∑∫x

(20)

where     
 . 

With the use of paraxial approximation in the 
MGB model for the primary field, the fifth-layer 
integral representation of the second harmonic 
wave field, Eq. (14), is now reduced to a one- 
dimensional form. Therefore, the computation 
time will be greatly reduced, as will be seen 
later.  

In a similar manner to Eq. (19), Eq. (20) 
can also be written in the form of a plane wave 
modified by diffraction correction

2
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2 2

2 2

0
1 1

( , ) exp(2 )
2

2 21 exp ( )( )
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N Nz m n a b
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p ikz

c

A A B B z
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β
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⎣ ⎦

⎡ ⎤′⎧ ⎫− ′+⎢ ⎥⎨ ⎬′ ′+ + − + + −⎢ ⎥⎩ ⎭⎣ ⎦
∑∑∫

x

(21)

where the first term represents the second 
harmonic pressure of the pure plane wave. We 
define the second term as a diffraction 
correction of the paraxial MGB model for the 
second harmonic wave. 

4. Simulation Results and Computational 
Efficiency

The accuracy of MGB models [Eqs. (18) 
and (20)] can be tested by comparing with the 
exact solutions obtained from the RS integral 
[Eqs. (13) and (14)]. The acoustical field 
variable used in these equations is pressure. We 
change this variable to particle displacement 
following the relationship:

,    1,  2n np in c u nρ ω= − = (22)
 

In all subsequent calculations and measurements, 
the particle displacements will be used as 
acoustical field variables. 

To calculate the received displacement at a 
distance   by a circular transducer of radius b, 
the concept of average displacement will be 
used and calculated as follows:  

2 0

1( ) ( , ) 2 d ,   1, 2
b

n nu z u r z r r n
b

π
π

= =∫ (23)

where   is computed from Eq. (22) and 

 . 
For simulation, consider a piston transducer 

of 2=9.5 mm diameter radiating into water at 
3.5 MHz, where a denotes the radius of the 
transmitting transducer. The properties of water 
used are: c=1480 m/s, =1000 kg/m3, =3.5. 
The initial displacement amplitude used is 
  

 m. Comparisons were first made for 
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u 1
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(a) (b)

Fig. 1 On-axis beam fields calculated as a function of propagation distance by RS integral solutions and 
MGB models: (a) fundamental displacement amplitude , and (b) second harmonic displacement 

amplitude . N=15 expansion coefficients were used in the MGB model calculations.

u 1
(m
)

u 2
(m
)

(a) (b)

Fig. 2 On-axis beam fields calculated as a function of propagation distance by RS integral solutions and 
MGB models: (a) fundamental displacement amplitude , and (b) second harmonic displacement 

amplitude . N=25 expansion coefficients were used in the MGB model calculations.

on-axis displacement amplitudes to be received 
by a point receiver. The number of expansion 
coefficients for  and  used in the MGB 
model are known to have effects on the beam 
field of the fundamental wave in the very near 
field. Kim et al. [19] obtained better results 
with a larger number (25 Gaussians) of 
expansion coefficients. The second harmonic 
beam field will also be affected by the 
fundamental wave. Therefore, two different 
numbers of expansion coefficients were tested: 
 = 15 and 25. These coefficients are listed in 
[20] and [19]. 

Fig. 1(a) shows the results of using 15 
expansion coefficients in the MGB model to 

calculate the on-axis displacement amplitudes of 
the fundamental wave, and compares with the 
results calculated exactly by using the RS 
integral solution. The multi-Gaussian beam model 
accurately models the on-axis linear displacement 
field of the transducer down to approximately 
5 mm from the transduce face. Fig. 1(b) shows 
a similar comparison for the on-axis second 
harmonic displacement field. The MGB model 
starts to show deviation from the exact displace- 
ments after passing the near-field distance, and 
this deviation remains fairly constant thereafter. 

Fig. 2(a) shows the results of using 25 
expansion coefficients to calculate the on-axis 
displacement field where now the MGB model 
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u 1
(m
)

u 2
(m
)

(a) (b)

u 1
(m
)

u 2
(m
)

(c) (d)

u 1
(m
)

u 2
(m
)

(e) (f)

Fig. 3 Average displacement amplitudes calculated by RS integral solutions and MGB models for different 
transmitter and receiver sizes: (a), (b) 2a=9.5 mm, 2b=6.35 mm, (c), (d) 2a=9.5 mm, 2b=9.5 mm, and 
(e), (f) 2a=9.5 mm, 2b=12.7 mm. Figures in the left column represent the fundamental displacement 
amplitudes, while figures in the right column represent the second harmonic displacement amplitudes.

is accurate to distance from the transducer of 
approximately 3 mm or greater. Use of the 25 
expansion coefficients also give better agreement 
over 15 coefficients for the second harmonic 
displacement field, as shown in Fig. 2(b). 
Therefore, all subsequent MGB model calcula- 
tions will be done using 25 expansion coefficients. 

The MGB model is an approximate paraxial 

solution to the linear wave equation, so that it 
cannot accurately model the fundamental field in 
the very near field from the transducer in case 
of a point receiver. The paraxial approximation 
used in the MGB model of the fundamental 
field also influences the accuracy of the MGB 
model of the second harmonic field because it 
is used as a forcing function for the second 
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Fig. 4 A Comparison of computation times for the average displacement amplitudes calculated by the MGB 
models and by the RS integrals solutions when the size of transmitter and receiver is the same, 
2a=2b= 9.5 mm: (a) total time to calculate the average displacements of the fundamental wave from 
distance z=1 to 200 mm, and (b) time to calculate the average displacements of the second harmonic 
wave at several selected distances

harmonic generation. The point receiver here can 
be regarded as an ideal case not encountered in 
common ultrasonic testing. As can be seen in 
further simulations below, the effect of paraxial 
approximation is negligible in cases of finite 
size receivers, and the overall agreement of 
MGB model with the exact solution is pretty 
good.

Fig. 3 shows the average displacement 
amplitudes calculated by the RS integral 
solutions and MGB models for different 
combinations of transmitter and receiver sizes. 
Compared to the oscillatory behavior of the 
fundamental and the second harmonic of a point 
receiver in Figs. 1 and 2, the averaging over the 
receiver tends to smooth much of the oscillatory 
behavior in the near field. Both of the funda- 
mental and the second harmonic displacements 
calculated by the MGB model agree well with 
the exact displacements for the most part of the 
range covered. Based on these comparisons with 
exact solutions, the paraxial MGB model can be 
used as a practical, accurate modeling tool for 
many nonlinear acoustics problems.

The efficiency of the MGB model in terms 
of computation time was also tested. Fig. 4 

shows a comparison of computation times for 
the average displacement amplitudes as cal- 
culated by the MGB models and the method of 
RS integrals when the transmitting and receiving 
transducers are the same size, 2=2= 9.5 mm. 

The fundamental displacement field at any 
point in the space,  , is calculated 
exactly by using the Rayleigh-Sommerfeld 
integral Eq. (13). This integral requires discret- 
ization of the source transducer area into many 
small elements, and then performs area 
integrations using the appropriate Green’s 
functions. The MGB model, on the other hand, 
calculates the fundamental displacement field, 
without any integration, just doing summations 
over the Gaussian beam expansion coefficients 
Eq. (18). In comparison of example calculations 
shown in Fig. 4(a), the MGB model is found to 
be more than one order of magnitude faster than 
the RS integral. 

For the second harmonic field calculation, 
the RS integral requires fifth-fold integration. 
The primary displacement calculated above now 
serves as virtual source, ′′′  , for the 
second harmonic generation. This is carried out 
for all points in a circular slice of the region 
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parallel to the transducer plane. These primary 
displacements are then squared and, using the 
appropriate Green’s functions, propagated onto 
the target point. This is then repeated for all 
slices of the region, and the contributions from 
all slices are summed Eq. (14). Consequently, 
this integration process will require a lot of 
computation time. On the other hand, the MGB 
model needs one-dimensional integration with 
discretization of small line elements in the   
direction only Eq. (20), so it is at least two 
orders of magnitude more numerically efficient 
than a direct numerical evaluation of a RS 
integral calculation of the secondary wave field 
Fig. 4(b). 

5. Summary and Future Work

In this work, we developed an analytical 
method to calculate diffraction beam fields of 
nonlinear waves propagating in fluids or solids. 
We employed the Westervelt equation as an 
analytical model that takes into account the 
combined effects of diffraction and nonlinearity. 
The quasilinear approximation was then used to 
predict the finite amplitude sound beam radiated 
by a plane piston source. Based on the integral 
expressions of the fundamental and second 
harmonics of the quasilinear theory, the paraxial 
multi-Gaussian beam (MGB) model was 
developed. It describes precisely the fundamental 
and second harmonic beam fields, and com- 
putationally very efficient. Another nice property 
of the MGB model is that the wave field of a 
transducer can be written as a plane wave 
propagation term modified by a diffraction 
correction term. Future work will include 
extension of the MGB model to derive explicit 
diffraction corrections for accurate determination 
of the nonlinearity parameter in fluids or solids. 
Attenuation effects are another factor to be 
considered in nonlinearity parameter evaluation.
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