• Title/Summary/Keyword: integral point

Search Result 521, Processing Time 0.026 seconds

Study on the Path Independency of $\Delta$J Integral ($\Delta$J 적분의 경로독립성에 관한 연구)

  • 김태순;박재학;윤기봉
    • Journal of the Korean Society of Safety
    • /
    • v.11 no.2
    • /
    • pp.16-24
    • /
    • 1996
  • In this study we simulate the fatigue test of a compact tension specimen and obtain the displacements, stresses and strains by using the finite element method. And we examine the path independency of $\Delta$J integral values and compare it with $\Delta$J integral values calculated from load-load line displacement curve. From the results of this study, we can find that $\Delta$J integral show the path Independency for saturated materials. We can also find that the path independency of $\Delta$J Is not satisfied when different material Is assumed near the crack tip, but the difference in $\Delta$J is small. And $\Delta$J integral values calculated from load-load line displacement is very analogous with those from integration path but always have lower values than those from integration paths. In the case of crack closing, we found that $\Delta$J integral values from load-load line displacement should be calculated with the load Increment values based on the crack opening point. The unsaturated material is also simulated and its $\Delta$J shows different values according to the path, but the difference is small.

  • PDF

Performance Analysis of Integral Receiver/Dryer Condenser for Automobile (자동차용 리시버/건조기 일체형 응축기의 성능해석)

  • Won, Sung-Pil
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.3
    • /
    • pp.245-252
    • /
    • 2007
  • The important problems from the point of view of preventing global warming are to save the power consumption of automotive air-conditioning systems and reduce the refrigerant amount filled. To achieve such requirements, integral receiver/dryer (R/D) condensers were developed recently. Typical integral R/D condensers have extra headers that play the role of R/D. Except an extra header and somewhat complex tube array resulting from the extra header, the most integral R/D condensers have almost the same specification that tube has multi channels, fin has louvers, flow in tube is parallel, etc. When integral condensers are applied, it is known that the refrigerating effect increases, resulting from the increase of subcooling degree in condenser, and the refrigerant amount used saves. In spite of several merits, integral condensers have not been applied a lot. That is why there is an uncertainty in performance, using integral condensers. The objective of this study is to theoretically optimize the tube array in an integral R/D condenser that is really being applied to some vehicles. The tube array has a great effect on the performance of the integral condenser as well as common ones. Through computer simulation, we could see that the tube array, 14-6-3-5-3-4, in the same condenser was the best, comparing heat release rate, pressure drop, etc. to the real array, 17-5-3-3-2-5. It should be noted that the optimization is based on the condenser performance only.

use of Cable Functions by Pode's Analysis in a Towing Cable or a Buoy Cable (끌줄 및 부이줄에 있어서 Pode 해석에 의한 줄 함수의 이용)

  • 박해훈
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.35 no.4
    • /
    • pp.353-358
    • /
    • 1999
  • Tabulated results by Pode are used for computing the cable shape and cable tension in static equilibrium. This paper describes a technique using the integral form by Pode to give a simplified calculation of the cable functions at any desired value because in most practical cased the points of interest on the cable are not the points of reference on which the tables are based. Solving the nondimentional tension, $\tau$, defined by Pode in closed form reduces the integral in cable functions to a single integral. The technique using the integral form enables us to calculate the cable functionsin at any critical angle and at any point in case of a towing cable or certain cable-buoy systems.

  • PDF

EXISTENCE AND ASYMPTOTIC STABILITY OF SOLUTIONS OF A PERTURBED FRACTIONAL FUNCTIONAL-INTEGRAL EQUATION WITH LINEAR MODIFICATION OF THE ARGUMENT

  • Darwish, Mohamed Abdalla;Henderson, Johnny;O'Regan, Donal
    • Bulletin of the Korean Mathematical Society
    • /
    • v.48 no.3
    • /
    • pp.539-553
    • /
    • 2011
  • We study the solvability of a perturbed quadratic functional-integral equation of fractional order with linear modification of the argument. This equation is considered in the Banach space of real functions defined, bounded and continuous on an unbounded interval. Moreover, we will obtain some asymptotic characterization of solutions.

Second order integral sliding mode observer and controller for a nuclear reactor

  • Surjagade, Piyush V.;Shimjith, S.R.;Tiwari, A.P.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.3
    • /
    • pp.552-559
    • /
    • 2020
  • This paper presents an observer-based chattering free robust optimal control scheme to regulate the total power of a nuclear reactor. The non-linear model of nuclear reactor is linearized around a steady state operating point to obtain a linear model for which an optimal second order integral sliding mode controller is designed. A second order integral sliding mode observer is also designed to estimate the unmeasurable states. In order to avoid the chattering effect, the discontinuous input of both observer and controller are designed using the super-twisting algorithm. The proposed controller is realized by combining an optimal linear tracking controller with a second order integral sliding mode controller to ensure minimum control effort and robustness of the closed-loop system in the presence of uncertainties. The condition for the selection of gains of discontinuous control based on the super-twisting algorithm is derived using a strict Lyapunov function. Performance of the proposed observer based control scheme is demonstrated through non-linear simulation studies.

A Study on Robustness of a Two-Degree-of-Freedom Servosystem with Nonlinear Type Uncertainty(II) - Rubust Stability Condition (비선형 불확실성에 대한 서보계의 강인성에 관한 고찰(II) - 강인 안정성 조건)

  • Kim, Young-Bok
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.3B
    • /
    • pp.99-105
    • /
    • 1999
  • In order to reject the steady-state tracking error, it is common to introduce integral compensators in servosystems for constant reference signals. However, if the mathematical model of the plant is exact and no disturbance input exists, the integral compensation is not necessary. From this point of view, a two-degree-of-freedom(2DOF) servosystem has been proposed, in which the integral compensation is effective only when there is a modeling error or a disturbance input. The present paper considers a robust stability of this 2DOF servosystem with nonlinear type uncertainty in the system, and a robust stability condition for the servosystem is introduced. This result guarantees that if the plant uncertainty is in the permissible set defined by the condition, gain tuning can be carried out to suppress the influence of the plant uncertainties and disturbance inputs.

  • PDF

Proof of equivalence of solutions of boundary integral and variational equations of the linear elasticity problem (선형 탄성 문제의 경계적분식 해와 변분해의 동등성 증명)

  • 유영면;박찬우;권길헌
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.6
    • /
    • pp.1001-1004
    • /
    • 1987
  • In this study mathematical properties of variational solution and solution of the boundary integral equation of the linear elasticity problem are studied. It is first reviewed that a variational solution for the three-dimensional linear elasticity problem exists in the Sobolev space [ $H^{1}$(.OMEGA.)]$^{3}$ and, then, it is shown that a unique solution of the boundary integral equation is identical to the variational solution in [ $H^{1}$(.OMEGA.)]$^{3}$. To represent the boundary integral equation, the Green's formula in the Sobolev space is utilized on the solution domain excluding a ball, with small radius .rho., centered at the point where the point load is applied. By letting .rho. tend to zero, it is shown that, for the linear elasticity problem, boundary integral equation is valid for the variational solution. From this fact, one can obtain a numerical approximatiion of the variational solution by the boundary element method even when the classical solution does not exist.exist.

A Study on the Advancement of the Competitive Power of Korean Electronics and Automobile Industries from a Product-Architectural Point of View (제품구조 관점으로부터의 한국 전자 및 자동차 산업 경쟁력 제고 방안에 관한 연구)

  • Rho, Hyung-Jin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.2
    • /
    • pp.179-187
    • /
    • 2010
  • The purpose of this study is to suggest the advancement of the competitive power of Korean electronics and automobile industries from a product-architectural point of view. There are two types for the characteristics of parts. They are the modular type and the integral type. The former is very independent between one subsystem and another, whereas the other is very dependent. The distinction of product architecture makes them different for the ability to organize developing products suited for the product manufacturing. The organizing ability is generally divided into the abilities of 'modulation integration' and 'selection assembly'. For the integral products such as cars, the integration ability is important between an enterprise and another, as well as between a part and another. However, the modular products such as a PC need the ability to select and effectively organize optimal parts or enterprises. The strategy raising product competitiveness is pursued by synthesizing 'design manufactu-turing strategy' for the product architecture and 'customer value strategy' for the customer values.

FRACTIONAL DIFFERENTIAL EQUATIONS WITH NONLOCAL BOUNDARY CONDITIONS

  • Soenjaya, Agus L.
    • Communications of the Korean Mathematical Society
    • /
    • v.37 no.2
    • /
    • pp.497-502
    • /
    • 2022
  • Existence and uniqueness for fractional differential equations satisfying a general nonlocal initial or boundary condition are proven by means of Schauder's fixed point theorem. The nonlocal condition is given as an integral with respect to a signed measure, and includes the standard initial value condition and multi-point boundary value condition.

Elastic solutions due to a time-harmonic point load in isotropic multi-layered media

  • Lin, Gao;Zhang, Pengchong;Liu, Jun;Wang, Wenyuan
    • Structural Engineering and Mechanics
    • /
    • v.57 no.2
    • /
    • pp.327-355
    • /
    • 2016
  • A new analytical derivation of the elastodynamic point load solutions for an isotropic multi-layered half-space is presented by means of the precise integration method (PIM) and the approach of dual vector. The time-harmonic external load is prescribed either on the external boundary or in the interior of the solid medium. Starting with the axisymmetric governing motion equations in a cylindrical coordinate system, a second order ordinary differential matrix equation can be gained by making use of the Hankel integral transform. Employing the technique of dual vector, the second order ordinary differential matrix equation can be simplified into a first-order one. The approach of PIM is implemented to obtain the solutions of the ordinary differential matrix equation in the Hankel integral transform domain. The PIM is a highly accurate algorithm to solve sets of first-order ordinary differential equations and any desired accuracy of the dynamic point load solutions can be achieved. The numerical simulation is based on algebraic matrix operation. As a result, the computational effort is reduced to a great extent and the computation is unconditionally stable. Selected numerical trials are given to validate the accuracy and applicability of the proposed approach. More examples are discussed to portray the dependence of the load-displacement response on the isotropic parameters of the multi-layered media, the depth of external load and the frequency of excitation.