• Title/Summary/Keyword: integral formula

Search Result 260, Processing Time 0.025 seconds

ESTIMATION OF A MODIFIED INTEGRAL ASSOCIATED WITH A SPECIAL FUNCTION KERNEL OF FOX'S H-FUNCTION TYPE

  • Al-Omari, Shrideh Khalaf Qasem
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.1
    • /
    • pp.125-136
    • /
    • 2020
  • In this article, we discuss classes of generalized functions for certain modified integral operator of Bessel-type involving Fox's H-function kernel. We employ a known differentiation formula of Fox's H-function to obtain the definition and properties of the distributional modified Bessel-type integral. Further, we derive a smoothness theorem for its kernel in a complete countably multi-normed space. On the other hand, using an appropriate class of convolution products, we derive axioms and establish spaces of modified Boehmians which are generalized distributions. On the defined spaces, we introduce addition, convolution, differentiation and scalar multiplication and further properties of the extended integral.

The receding contact problem of two elastic layers supported by two elastic quarter planes

  • Yaylaci, Murat;Birinci, Ahmet
    • Structural Engineering and Mechanics
    • /
    • v.48 no.2
    • /
    • pp.241-255
    • /
    • 2013
  • The receding contact problem for two elastic layers whose elastic constants and heights are different supported by two elastic quarter planes is considered. The lower layer is supported by two elastic quarter planes and the upper elastic layer is subjected to symmetrical distributed load whose heights are 2a on its top surface. It is assumed that the contact between all surfaces is frictionless and the effect of gravity force is neglected. The problem is formulated and solved by using Theory of Elasticity and Integral Transform Technique. The problem is reduced to a system of singular integral equations in which contact pressures are the unknown functions by using integral transform technique and boundary conditions of the problem. Stresses and displacements are expressed depending on the contact pressures using Fourier and Mellin formula technique. The singular integral equation is solved numerically by using Gauss-Jacobi integration formulation. Numerical results are obtained for various dimensionless quantities for the contact pressures and the contact areas are presented in graphics and tables.

ON CLENSHAW-CURTIS SPECTRAL COLLOCATION METHOD FOR VOLTERRA INTEGRAL EQUATIONS

  • CHAOLAN, HUANG;CHUNHUA, FANG;JIANYU, WANG;ZHENGSU, WAN
    • Journal of applied mathematics & informatics
    • /
    • v.40 no.5_6
    • /
    • pp.983-993
    • /
    • 2022
  • The main purpose of this paper is to solve the second kind Volterra integral equations by Clenshaw-Curtis spectral collocation method. First of all, we can transform the integral interval from [-1, x] to [-1, 1] through a simple linear transformation, and discretize the integral term in the equation by Clenshaw-Curtis quadrature formula to obtain the collocation equations. Then we provide a rigorous error analysis for the proposed method. At last, several numerical example are used to verify the results of theoretical analysis.

INCOMPLETE EXTENDED HURWITZ-LERCH ZETA FUNCTIONS AND ASSOCIATED PROPERTIES

  • Parmar, Rakesh K.;Saxena, Ram K.
    • Communications of the Korean Mathematical Society
    • /
    • v.32 no.2
    • /
    • pp.287-304
    • /
    • 2017
  • Motivated mainly by certain interesting recent extensions of the generalized hypergeometric function [Integral Transforms Spec. Funct. 23 (2012), 659-683] by means of the incomplete Pochhammer symbols $({\lambda};{\kappa})_{\nu}$ and $[{\lambda};{\kappa}]_{\nu}$, we first introduce incomplete Fox-Wright function. We then define the families of incomplete extended Hurwitz-Lerch Zeta function. We then systematically investigate several interesting properties of these incomplete extended Hurwitz-Lerch Zeta function which include various integral representations, summation formula, fractional derivative formula. We also consider an application to probability distributions and some special cases of our main results.

SCALAR CURVATURE OF CONTACT THREE CR-SUBMANIFOLDS IN A UNIT (4m + 3)-SPHERE

  • Kim, Hyang-Sook;Pak, Jin-Suk
    • Bulletin of the Korean Mathematical Society
    • /
    • v.48 no.3
    • /
    • pp.585-600
    • /
    • 2011
  • In this paper we derive an integral formula on an (n + 3)-dimensional, compact, minimal contact three CR-submanifold M of (p-1) contact three CR-dimension immersed in a unit (4m+3)-sphere $S^{4m+3}$. Using this integral formula, we give a sufficient condition concerning the scalar curvature of M in order that such a submanifold M is to be a generalized Clifford torus.

Development of Hybrid Methods for the Prediction of Internal Flow-Induced Noise and Its Application to Throttle Valve Noise in an Automotive Engine (내부공력소음해석기법의 개발과 자동차용 엔진 흡기 시스템의 기류음 예측을 위한 적용)

  • 정철웅;김성태;김재헌;이수갑
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.78-83
    • /
    • 2003
  • General algorithm is developed for the prediction of internal flow-induced noise. This algorithm is based on the integral formula derived by using the General Green Function, Lighthills acoustic analogy and Curls extension of Lighthills. Novel approach of this algorithm is that the integral formula is so arranged as to predict frequency-domain acoustic signal at any location in a duct by using unsteady flow data in space and time, which can be provided by the Computational Fluid Dynamics Techniques. This semi-analytic model is applied to the prediction of internal aerodynamic noise from a throttle valve in an automotive engine. The predicted noise levels from the throttle valve are compared with actual measurements. This illustrative computation shows that the current method permits generalized predictions of flow noise generated by bluff bodies and turbulence in flow ducts.

  • PDF

CERTAIN RESULTS ON THE q-GENOCCHI NUMBERS AND POLYNOMIALS

  • Seo, Jong Jin
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.26 no.1
    • /
    • pp.231-242
    • /
    • 2013
  • In this work, we deal with $q$-Genocchi numbers and polynomials. We derive not only new but also interesting properties of the $q$-Genocchi numbers and polynomials. Also, we give Cauchy-type integral formula of the $q$-Genocchi polynomials and derive distribution formula for the $q$-Genocchi polynomials. In the final part, we introduce a definition of $q$-Zeta-type function which is interpolation function of the $q$-Genocchi polynomials at negative integers which we express in the present paper.

APPARENT INTEGRALS MOUNTED WITH THE BESSEL-STRUVE KERNEL FUNCTION

  • Khan, N.U.;Khan, S.W.
    • Honam Mathematical Journal
    • /
    • v.41 no.1
    • /
    • pp.163-174
    • /
    • 2019
  • The veritable pursuit of this exegesis is to exhibit integrals affined with the Bessel-Struve kernel function, which are explicitly inscribed in terms of generalized (Wright) hypergeometric function and also the product of generalized (Wright) hypergeometric function with sum of two confluent hypergeometric functions. Somewhat integrals involving exponential functions, modified Bessel functions and Struve functions of order zero and one are also obtained as special cases of our chief results.

EVALUATION FORMULAS FOR AN ANALOGUE OF CONDITIONAL ANALYTIC FEYNMAN INTEGRALS OVER A FUNCTION SPACE

  • Cho, Dong-Hyun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.48 no.3
    • /
    • pp.655-672
    • /
    • 2011
  • Let $C^r$[0,t] be the function space of the vector-valued continuous paths x : [0,t] ${\rightarrow}$ $R^r$ and define $X_t$ : $C^r$[0,t] ${\rightarrow}$ $R^{(n+1)r}$ and $Y_t$ : $C^r$[0,t] ${\rightarrow}$ $R^{nr}$ by $X_t(x)$ = (x($t_0$), x($t_1$), ..., x($t_{n-1}$), x($t_n$)) and $Y_t$(x) = (x($t_0$), x($t_1$), ..., x($t_{n-1}$)), respectively, where 0 = $t_0$ < $t_1$ < ... < $t_n$ = t. In the present paper, with the conditioning functions $X_t$ and $Y_t$, we introduce two simple formulas for the conditional expectations over $C^r$[0,t], an analogue of the r-dimensional Wiener space. We establish evaluation formulas for the analogues of the analytic Wiener and Feynman integrals for the function $G(x)=\exp{{\int}_0^t{\theta}(s,x(s))d{\eta}(s)}{\psi}(x(t))$, where ${\theta}(s,{\cdot})$ and are the Fourier-Stieltjes transforms of the complex Borel measures on ${\mathbb{R}}^r$. Using the simple formulas, we evaluate the analogues of the conditional analytic Wiener and Feynman integrals of the functional G.

Shape Design Sensitivity Analysis for Interface Problem in Axisymmetric Elasticity

  • Choi, Joo-Ho;Lee, Boo-Youn;Han, Jung-Suk
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.197-206
    • /
    • 2000
  • A boundary integral equation method in the shape design sensitivity analysis is developed for the elasticity problems with axisymmetric non-homogeneous bodies. Functionals involving displacements and tractions at the zonal interface are considered. Sensitivity formula in terms of the interface shape variation is then derived by taking derivative of the boundary integral identity. Adjoint problem is defined such that displacement and traction discontinuity is imposed at the interface. Analytic example for a compound cylinder is taken to show the validity of the derived sensitivity formula. In the numerical implementation, solutions at the interface for the primal and adjoint system are used for the sensitivity. While the BEM is a natural tool for the solution, more generalization should be made since it should handle the jump conditions at the interface. Accuracy of the sensitivity is evaluated numerically by the same compound cylinder problem. The endosseous implant-bone interface problem is considered next as a practical application, in which the stress value is of great importance for successful osseointegration at the interface. As a preliminary step, a simple model with tapered cylinder is considered in this paper. Numerical accuracy is shown to be excellent which promises that the method can be used as an efficient and reliable tool in the optimization procedure for the implant design. Though only the axisymmetric problem is considered here, the method can be applied to general elasticity problems having interface.

  • PDF