• 제목/요약/키워드: insulation design

검색결과 900건 처리시간 0.022초

지열 열펌프 및 태양광 발전 적용이 비주거용 건물의 에너지효율등급과 ZEB 인증 등급에 미치는 영향 (The Effect of a Geothermal Heat Pump and Photovoltaics Application on the Building Energy Efficiency and ZEB Certification Rating for a Non-Residential Building)

  • 문건호;박창용
    • 한국지열·수열에너지학회논문집
    • /
    • 제19권1호
    • /
    • pp.1-13
    • /
    • 2023
  • Many government in the world have conducted building energy performance certification program to reduce building energy consumption. In this study, a reference building and its HVAC system was modeled, and the energy load and consumption were estimated by the ECO2 program. The software is a simple building energy simulation program based on monthly calculated method. The building energy efficiency rating the the reference building was 1+ under baseline condition. The simulation results showed that the insulation performance slightly affected building energy load and consumption, but light density had a significant effect on them. The application of geothermal heat pumps gave improvement of building energy efficiency rating but it could not make it possible to get zero energy building(ZEB) certification. The ZEB 5 certification could be achieved by using photovoltaics, however getting better grade was difficult. The simulation results showed that the ZEB 4 certification, one grade higher than ZEB 5, could be attained by using more than one renewable energy source such as geothermal and solar energy in this study.

L형 옹벽의 동상대책에 있어서 치환공법의 설계 (Design of Replacement Method on Anti-freeze Process of L Type Retaining Wells)

  • 예대호;김영수;영목휘지
    • 한국지반공학회논문집
    • /
    • 제25권9호
    • /
    • pp.19-27
    • /
    • 2009
  • 일본북해도에 위치하는 기타미국립공업대학 야외동상실험장에서 프리캐스트 콘크리트 L형 옹벽의 동상대책을 검토하였다. 설치된 실험옹벽은 다음의 3구간으로 구성되었다. i) 동상대책을 실시하지 않은 구간(동상을 일으키기 쉬운 흙으로 뒷채움함), ii) 단열공법을 실시한 구간(옹벽배면에 발포스티롤 단열재를 설치함), iii)치환공법대책을 실시한 구간(동상을 일으키기 어려운 화산재로 뒷채움함). 세 번의 지반동결-융해기 동안의 뒷채움 흙 속의 동결면분포, 지중온도, 옹벽벽체의 변위를 계측하여 동결토압의 발생메커니즘을 분석하였고, 단열공법과 치환공법의 유효성을 확인하였다. 그리고 수치해석을 이용하여 각종 단면형상의 L형 옹벽의 뒷채움 흙 속의 동결면형상을 추정하였고, 그 해석결과를 통하여 비동상성 뒤채움 재료로서 치환하는 적절한 치환범위의 결정방법을 제안하였다.

계면요소를 이용한 경량철근콘크리트 보의 전단거동해석 (Analysis of Shear Behavior of Reinforced ALWAC Beam Using Interface Elements)

  • 이인규;김우
    • 대한토목학회논문집
    • /
    • 제26권1A호
    • /
    • pp.107-115
    • /
    • 2006
  • 전단보강이 없는 철근콘크리트 보의 파괴특성의 정의는 현재까지는 어려운 주제이다. 과거의 본질적인 실험적 연구와 이론적인 노력에도 불구하고 전단파괴의 특성은 완전히 이해되지 않았다. 따라서 보의 설계시 전단강도 산정에 반경험식의 적용이 되어오고 있다. 최근의 다양한 건설환경 하에서 고성능 콘크리트의 수요가 증가하고 있으며 내구성을 포함한 가격경쟁력이 뛰어난 재료들이 필요하며 특히 경량철근콘크리트의 경우에는 경량이면서 적절한 강도를 가지고 온도와 소음차단에 효과적이기 때문에 주요부재 및 구조물에 응용할 수 있다. 이러한 장점에도 불구하고 그의 극한파괴거동에 대해서는 다소 잘 정리되어 있지 않다. 이러한 이유로 본 연구에서는 경량철근콘크리트 보의 전단거동을 살펴보며 그의 특이성을 기존 실험적 연구와 해석적 연구를 통해 비교, 검토하고자 하였다.

항공기용 차폐 케이블의 구조에 따른 RTCA DO-160G Sec. 22 간접낙뢰 영향성 분석 (Analysis of Indirect Lightning Impact on Aircraft Shielded Cable Structure in accordance with RTCA DO-160G Sec. 22)

  • 김성연;김태현;김민성;이왕상
    • 항공우주시스템공학회지
    • /
    • 제17권6호
    • /
    • pp.35-45
    • /
    • 2023
  • 본 논문에서는 항공기용 차폐 케이블의 구조에 따른 간접낙뢰의 영향성을 분석하고, 차폐력 향상을 위한 차폐 케이블 구조를 분석하였다. 항공기에서 케이블은 부품 중에 가장 많은 비중을 차지하고 있고, 항공기 프레임과 전자기기들이 연결되어 있어 영향을 많이 줄 수 있다. 특히, 간접낙뢰 노이즈는 항공 전자기기 오동작 및 손상을 발생시킬 수 있어, 차폐 케이블을 활용하여 간접낙뢰 노이즈로 인한 피해를 줄일 수 있다. 항공기용 차폐 케이블의 차폐층 유무, 내심, 절연체 등의 케이블 구조에 따른 간접낙뢰 영향성 분석을 진행하였다. 또한, 간접낙뢰 공인 규격인 RTCA DO-160G Sec. 22를 적용하여 시뮬레이션 및 실험하여 검증하였다.

GIS 스페이서 내장형 저전력 측정용 변압기의 설계 및 제작 (Design and Fabrication of an LPVT Embedded in a GIS Spacer)

  • 박성관;이경렬;김남훈;김철환;길경석
    • 한국전기전자재료학회논문지
    • /
    • 제37권2호
    • /
    • pp.175-181
    • /
    • 2024
  • In electrical power substations, bulky iron-core potential transformers (PTs) are installed in a tank of gas-insulated switchgear (GIS) to measure system voltages. This paper proposed a low-power voltage transformer (LPVT) that can replace the conventional iron-core PTs in response to the demand for the digitalization of substations. The prototype LPVT consists of a capacitive voltage divider (CVD) which is embedded in a spacer and an impedance matching circuit using passive components. The CVD was fabricated with a flexible PCB to acquire enough insulation performance and withstand vibration and shock during operation. The performance of the LPVT was evaluated at 80%, 100%, and 120% of the rated voltage (38.1 kV) according to IEC 61869-11. An accuracy correction algorithm based on LabVIEW was applied to correct the voltage ratio and phase error. The corrected voltage ratio and phase error were +0.134% and +0.079 min., respectively, which satisfies the accuracy CL 0.2. In addition, the voltage ratio of LPVT was analyzed in ranges of -40~+40℃, and a temperature correction coefficient was applied to maintain the accuracy CL 0.2. By applying the LPVT proposed in this paper to the same rating GIS, it can be reduced the length per GIS bay by 11%, and the amount of SF6 by 5~7%.

Distortional buckling performance of cold-formed steel lightweight concrete composite columns

  • Yanchun Li;Aihong Han;Ruibo Li;Jihao Chen;Yanfen Xie;Jiaojiao Chen
    • Steel and Composite Structures
    • /
    • 제50권6호
    • /
    • pp.675-688
    • /
    • 2024
  • Cold-formed steel (CFS) is prone to buckling failure under loading. Lightweight concrete (LC) made of lightweight aggregate has light weight and excellent thermal insulation performance. However, concrete is brittle in nature which is why different materials have been used to improve this inherent behavior of concrete. The distortional buckling (DB) performance of cold-formed steel-lightweight concrete (CFS-LC) composite columns was investigated in this paper. Firstly, the compressive strength test of foam concrete (FC) and ceramsite concrete (CC) was carried out. The performance of the CFS-LC members was investigated. The test results indicated that the concrete-filled can effectively control the DB of the members. Secondly, finite element (FE) models of each test specimen were developed and validated with the experimental tests followed by extensive parametric studies using numerical analysis based on the validated FE models. The results show that the thickness of the steel and the strength of the concrete-filled were the main factors on the DB and bearing capacity of the members. Finally, the bearing capacity of the test specimens was calculated by using current codes. The results showed that the design results of the AIJ-1997 specification were closer to the experimental and FE values, while other results of specifications were conservative.

단독주택 건물 그린리모델링에 따른 건물 에너지 성능과 운전비용 절감 효과 평가 (Energy Performance and Operating Cost Assessment for Implementing Green Remodeling Technologies in a Detached House)

  • 손병후;이수인;강재식
    • 한국지열·수열에너지학회논문집
    • /
    • 제19권4호
    • /
    • pp.27-38
    • /
    • 2023
  • The Government the Republic of Korea is showing a lot of interest in net zero-energy buildings (NZEBs) to reduce energy consumption of buildings and to promote green growth policy in construction sector. The application of building passive technologies and renewable energies is essential to achieving NZEBs. Green remodeling reinforced the insulation of the exterior walls and roofs of the buildings and replaced high-efficiency windows and doors. In this study, the energy performance before and after green remodeling applied in a detached house was comparatively analyzed for baseline scenario and three different ones, ALT 1, ALT 2 and ALT 3. A building modeling and simulation software (DesignBuilder V7.0) with EnergyPlus (V9.4) calculation engine was used to calculate the energy demand and energy consumption for each scenario. Based on the calculation results of the building's energy demand for baseline, it was determined that the target building required more heating energy than cooling energy. The simulation results also showed that the implementation of building envelope performance improvement technologies (ALT 1) could notably decrease the heating energy consumption of the building. After the remodeling (ALT 1), the source energy consumption per unit floor area was assessed to be reduced by 65.2%, compared to prior remodeling of 338.7 kWh/m2 -y. Meanwhile, ALT 2 can achieve energy savings of 67.7% and ALT 3 can achieve savings of 73.1%. Following completion of the remodeling project, actual construction costs, and on-site measurements and verification results will be gathered and compared with the simulation results. Additionally, economic analysis including construction costs and payback period will be conducted using actual site data.

설비공학 분야의 최근 연구 동향 : 2016년 학회지 논문에 대한 종합적 고찰 (Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2016)

  • 이대영;김사량;김현정;김동선;박준석;임병찬
    • 설비공학논문집
    • /
    • 제29권6호
    • /
    • pp.327-340
    • /
    • 2017
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2016. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering have been reviewed as groups of flow, heat and mass transfer, the reduction of pollutant exhaust gas, cooling and heating, the renewable energy system and the flow around buildings. CFD schemes were used more for all research areas. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the results of the long-term performance variation of the plate-type enthalpy exchange element made of paper, design optimization of an extruded-type cooling structure for reducing the weight of LED street lights, and hot plate welding of thermoplastic elastomer packing. In the area of pool boiling and condensing, the heat transfer characteristics of a finned-tube heat exchanger in a PCM (phase change material) thermal energy storage system, influence of flow boiling heat transfer on fouling phenomenon in nanofluids, and PCM at the simultaneous charging and discharging condition were studied. In the area of industrial heat exchangers, one-dimensional flow network model and porous-media model, and R245fa in a plate-shell heat exchanger were studied. (3) Various studies were published in the categories of refrigeration cycle, alternative refrigeration/energy system, system control. In the refrigeration cycle category, subjects include mobile cold storage heat exchanger, compressor reliability, indirect refrigeration system with $CO_2$ as secondary fluid, heat pump for fuel-cell vehicle, heat recovery from hybrid drier and heat exchangers with two-port and flat tubes. In the alternative refrigeration/energy system category, subjects include membrane module for dehumidification refrigeration, desiccant-assisted low-temperature drying, regenerative evaporative cooler and ejector-assisted multi-stage evaporation. In the system control category, subjects include multi-refrigeration system control, emergency cooling of data center and variable-speed compressor control. (4) In building mechanical system research fields, fifteenth studies were reported for achieving effective design of the mechanical systems, and also for maximizing the energy efficiency of buildings. The topics of the studies included energy performance, HVAC system, ventilation, renewable energies, etc. Proposed designs, performance tests using numerical methods and experiments provide useful information and key data which could be help for improving the energy efficiency of the buildings. (5) The field of architectural environment was mostly focused on indoor environment and building energy. The main researches of indoor environment were related to the analyses of indoor thermal environments controlled by portable cooler, the effects of outdoor wind pressure in airflow at high-rise buildings, window air tightness related to the filling piece shapes, stack effect in core type's office building and the development of a movable drawer-type light shelf with adjustable depth of the reflector. The subjects of building energy were worked on the energy consumption analysis in office building, the prediction of exit air temperature of horizontal geothermal heat exchanger, LS-SVM based modeling of hot water supply load for district heating system, the energy saving effect of ERV system using night purge control method and the effect of strengthened insulation level to the building heating and cooling load.

K-means 클러스터링 기반 소프트맥스 신경회로망 부분방전 패턴분류의 설계 : 분류기 구조의 비교연구 및 해석 (Design of Partial Discharge Pattern Classifier of Softmax Neural Networks Based on K-means Clustering : Comparative Studies and Analysis of Classifier Architecture)

  • 정병진;오성권
    • 전기학회논문지
    • /
    • 제67권1호
    • /
    • pp.114-123
    • /
    • 2018
  • This paper concerns a design and learning method of softmax function neural networks based on K-means clustering. The partial discharge data Information is preliminarily processed through simulation using an Epoxy Mica Coupling sensor and an internal Phase Resolved Partial Discharge Analysis algorithm. The obtained information is processed according to the characteristics of the pattern using a Motor Insulation Monitoring System program. At this time, the processed data are total 4 types that void discharge, corona discharge, surface discharge and slot discharge. The partial discharge data with high dimensional input variables are secondarily processed by principal component analysis method and reduced with keeping the characteristics of pattern as low dimensional input variables. And therefore, the pattern classifier processing speed exhibits improved effects. In addition, in the process of extracting the partial discharge data through the MIMS program, the magnitude of amplitude is divided into the maximum value and the average value, and two pattern characteristics are set and compared and analyzed. In the first half of the proposed partial discharge pattern classifier, the input and hidden layers are classified by using the K-means clustering method and the output of the hidden layer is obtained. In the latter part, the cross entropy error function is used for parameter learning between the hidden layer and the output layer. The final output layer is output as a normalized probability value between 0 and 1 using the softmax function. The advantage of using the softmax function is that it allows access and application of multiple class problems and stochastic interpretation. First of all, there is an advantage that one output value affects the remaining output value and its accompanying learning is accelerated. Also, to solve the overfitting problem, L2-normalization is applied. To prove the superiority of the proposed pattern classifier, we compare and analyze the classification rate with conventional radial basis function neural networks.

실측데이터를 이용한 저에너지주택의 에너지성능평가 (Energy Performance Evaluation of Low Energy Houses using Metering Data)

  • 백남춘;김성범;오병칠;윤종호;신우철
    • 설비공학논문집
    • /
    • 제27권7호
    • /
    • pp.369-374
    • /
    • 2015
  • This study analyzed analyzes the energy performance of six houses in Daejeon completed which were built in 2011. Observed The observed houses, which were all designed and constructed inof the same size and structure, are were highly insulated with triple Low-E coating windows; the insulation level of the walls is was $0.13W/m^2K$ and that of the roof is was $0.10W/m^2K$. As electric houses, all of the energy supplied to the houses, including for cooking, is was supplied by electricity. A and 3~4 kWp of photovoltaic system and a 3~5 kW of ground source heat pump (GSHP) were installed in each house tofor providing provide space heating/and cooling and hot water are installed. We constructed a Web-based remote monitoring system in order to understand energy consumption and the dynamic behavior of the energy system. T, and the results of our metering data analysis of 2013 are as follows. First, the annual residential energy consumption is was 4,400 kWh (${\sigma}=1,209$) and GSHP energy consumption is was 5,182 kWh (${\sigma}=1,164$). Second, residential energy consumption ranked highest in average energy usage, with at 45% of the total, followed by heating with at 30%, hot water supply with at 17% and cooling with at 6%. Third, the average energy independence rate is was 51.8%, the GFA (Gross gross floor area) criteria average energy consumption unit is was $48.7kWh/m^2yr$ (${\sigma}=10.1$), and the net energy consumption unit (except the energy yield of the PV systems) is was $24.7kWh/m^2yr$ (${\sigma}=8.8$).