DOI QR코드

DOI QR Code

Analysis of Indirect Lightning Impact on Aircraft Shielded Cable Structure in accordance with RTCA DO-160G Sec. 22

항공기용 차폐 케이블의 구조에 따른 RTCA DO-160G Sec. 22 간접낙뢰 영향성 분석

  • Sung-Yeon Kim (Dept. of Electronic Engineering, Gyeongsang National University) ;
  • Tae-Hyeon Kim (Dept. of Electronic Engineering, Gyeongsang National University) ;
  • Min-Seong Kim (Dept. of Electronic Engineering, Gyeongsang National University) ;
  • Wang-Sang Lee (Dept. of Electronic Engineering, Gyeongsang National University)
  • 김성연 (경상국립대학교 전자공학과) ;
  • 김태현 (경상국립대학교 전자공학과) ;
  • 김민성 (경상국립대학교 전자공학과) ;
  • 이왕상 (경상국립대학교 전자공학과)
  • Received : 2023.09.14
  • Accepted : 2023.11.17
  • Published : 2023.12.31

Abstract

In this paper, we analyze the influence of indirect lightning strikes based on the structure of shielded cables used in an aircraft and propose a cable structure to enhance shielding effectiveness. Cables in an aircraft account for the largest proportion among components and play a crucial role in connecting aircraft frames and electronic devices; thus, making them highly influential. In particular, indirect lightning strike noise can lead to malfunctions and cause damage in aircraft electronic equipment, making the utilization of shielded cables essential for mitigating damage caused by indirect lightning strike noise. We conducted an analysis of the impact of indirect lightning strikes on aircraft shielded cables considering factors, such as the presence of shielding layers, core, and insulation in the cable structure. Furthermore, we validated our findings through simulations and experiments by applying the internationally recognized standard for indirect lightning, RTCA DO-160G Sec. 22.

본 논문에서는 항공기용 차폐 케이블의 구조에 따른 간접낙뢰의 영향성을 분석하고, 차폐력 향상을 위한 차폐 케이블 구조를 분석하였다. 항공기에서 케이블은 부품 중에 가장 많은 비중을 차지하고 있고, 항공기 프레임과 전자기기들이 연결되어 있어 영향을 많이 줄 수 있다. 특히, 간접낙뢰 노이즈는 항공 전자기기 오동작 및 손상을 발생시킬 수 있어, 차폐 케이블을 활용하여 간접낙뢰 노이즈로 인한 피해를 줄일 수 있다. 항공기용 차폐 케이블의 차폐층 유무, 내심, 절연체 등의 케이블 구조에 따른 간접낙뢰 영향성 분석을 진행하였다. 또한, 간접낙뢰 공인 규격인 RTCA DO-160G Sec. 22를 적용하여 시뮬레이션 및 실험하여 검증하였다.

Keywords

References

  1. F. A. Fisher, J. A. Plumer and R. A. Perala, "Lightning protection of aircraft," Lightning Technologies Inc, Pittsfield, MA, 1990
  2. Aerossurance, "NTSB on a 787 display loss after a lightning strike," Accidents & Incidents Investigations Reports, May 2018.
  3. S. H. Han, "Certification of aircraft system and avionics equipment against lightning indirect effect", Aerospace Engineering and Technology, no. 4, pp. 247-259, Jul. 2005.
  4. C. A. Mc Creary and B. A. Lail "Lightning transient suppression circuit design for avionics equipment," IEEE International Symposium. on Electromagnetic Compatibility, Pittsburgh, PA, pp. 93-98, Aug. 2012.
  5. Radio technical commission for aeronautics Inc, RTCA/DO-160G, Environmental conditions and test procedures for airborne equipment section 22 lightning induced transient susceptibility, Washington DC, USA, pp. 22-1-22-42, Dec. 2010.
  6. K. Filik, S. Hajder and G. Maslowski, G, "Multi-stroke lightning interaction with wiring harness", Experimental tests and modelling. Energies, vol. 14, no. 8, Apr. 2021.
  7. C. R. Paul, R. C. Scully and M. A Steffka, "Introduction to electromagnetic compatibility," 2nd Ed, Wiley-interscience, NJ, 2005.
  8. F. Rachidi, "A review of field-to-transmission line coupling models with special emphasis to lightning- induced voltages on overhead lines," IEEE Trans of Electromagnetic Compatibility, vol. 54, no. 4, pp. 898-911, Aug. 2012. https://doi.org/10.1109/TEMC.2011.2181519
  9. E. F. Vance, "shielded effectiveness of braided-wire shields," IEEE Trans of Electromagnetic Compatibility, pp. 71-77, May 1975
  10. W. J. R. Hoefer, "The transmission-line matrix method: Theory and applications," IEEE Trans of Micro-wave Theory and Techniques, vol. 33, no. 10, pp. 882-893, Oct. 1985. https://doi.org/10.1109/TMTT.1985.1133146
  11. M. Tyni, "The transfer impedance of coaxial cables with braided outer conductor," Digest of the l0th International Wroclaw Symposium of EMC, pp. 410-419, Sep. 1976
  12. J. Cho, H. Kim, and K. Y. Jung, "Simple transmission line model suitable for the electromagnetic pulse coupling analysis of twisted-wire pairs above ground," IEICE Electronics Express, vol. 13, no. 7, pp. 20160149, Apr. 2016.
  13. V. Cooray, "Calculating lightning-induced overvoltages in power lines. A comparison of two coupling models," IEEE Trans of Electromagnetic Compatibility, vol. 36, no. 3, pp. 179-182, Aug. 1994. https://doi.org/10.1109/15.305462
  14. C. A. Nucci, F. Rachidi, M. Ianoz and C. Mazzetti, "Comparison of two coupling models for lightning-induced overvoltage calculations," IEEE Trans of Power Delivery, vol. 10, no. 1, pp. 330-339, Jan. 1995. https://doi.org/10.1109/61.368381
  15. C. A. Nucci and F. Rachidi, "On the contribution of the electromagnetic field components in field-to-transmission line interaction," IEEE Trans. on Electromagnetic Compatibility, vol. 37, no. 4, pp. 505-508, Nov. 1995. https://doi.org/10.1109/15.477334
  16. D. Mestriner, M. Nicora, R. Procopio, M. Brignone, M. Rossi, F. Delfino and E. Fiori, "Lightning current parameters effects on the induced overvoltages in transmission lines," 2019 IEEE International Conference on Environment and Electrical Engineering and 2019 IEEE Industrial and Commercial Power Systems Europe, pp. 1-5, Jun. 2019.
  17. O. L. Hoeft and S. H. Joseph, "Measured electromagnetic shielded performance of commonly used cables and connectors," IEEE Transactions on Electromagnetic Compatibility, vol. 30, no. 3, pp 260-275, Aug. 1988. https://doi.org/10.1109/15.3304
  18. C. R. Paul, "Applications of multiconductor transmission line theory to the prediction of cable coupling," Multiconductor transmission line theory, University of Kentucky, Mar. 1976.
  19. S. H. Jo, Y. H. Noh, C. G. Kim, Y. W. Park, D. H. Lee, K. S. and J. G. Yook, "Analysis of HEMP coupling signal for a coaxial cable considering various cable parameters", The Journal of Korean Institute of Electromagnetic Engineering and Science vol. 31, no. 6, pp. 542-554, Jun. 2020. https://doi.org/10.5515/KJKIEES.2020.31.6.542
  20. P. Xiao, P. A. Du and B. Zhang, "An analytical method for radiated electromagnetic and shielded effectiveness of braided coaxial cable," IEEE Trans of Electromagnetic Compatibility, vol. 61, no. 1, pp. 121-127, Feb. 2018 https://doi.org/10.1109/TEMC.2018.2814629
  21. M Xu, Y Wang, X Li, X Dong, H Zhang, H Zhao and X Shi, "Analysis of the influence of the structural parameters of aircraft braided-Shield Cable on shielded effectiveness," IEEE Trans of Electromagnetic Compatibility, vol. 62, no. 4, pp. 1028-1036, Aug. 2020. https://doi.org/10.1109/TEMC.2019.2926393
  22. T. Kley, "Optimized single-braided cable shields", IEEE Trans of Electromagnetic Compatibility, vol. 35. no. 1, pp. 1-9, Feb. 1993. https://doi.org/10.1109/15.249390
  23. J. Leuchter, Q. H. Dong, J. Boril and E. Blasch, "Electromagnetic immunity of aircraft wireless and cables from electromagnetic interferences," 2017 IEEE/AIAA 36th Digital Avionics Systems Conference, pp. 1-6, Sep. 2017.
  24. J. P. Jung, S. G. Lee, and S. H. Lee. "Analysis for next-generation high-Speed MIL-STD-1553 Bus Technology." Journal of Aerospace System Engineering, vol. 11, no. 6, pp.76-83, Dec. 2017
  25. W. Salgado, M. Molina, J. Hidalgo and E. Jarrin, "Cables Shield in Aircraft," 15th LACCEI International Multi-Conference for Engineering, Education, and Technology, p.31, July 19-21, 2017.
  26. J. Lee, S. Lee, W. Yang, and S. Kim, "Test Method and Results of Lightning Indirect Effects for Helicopter-mounted Missile System," Journal of the Korean Society for Aeronautical & Space Sciences, vol. 50, no. 5. pp. 359-365, May 31, 2022. https://doi.org/10.5139/JKSAS.2022.50.5.359