DOI QR코드

DOI QR Code

Design and Fabrication of an LPVT Embedded in a GIS Spacer

GIS 스페이서 내장형 저전력 측정용 변압기의 설계 및 제작

  • Seung-Gwan Park (Department of Electrical and Electronics Engineering, Korea Maritime and Ocean University) ;
  • Gyeong-Yeol Lee (Department of Electrical and Electronics Engineering, Korea Maritime and Ocean University) ;
  • Nam-Hoon Kim (Department of Electrical and Electronics Engineering, Korea Maritime and Ocean University) ;
  • Cheol-Hwan Kim (Railway Facilities Safety Division, Ministry of Land, Infrastructure and Transport) ;
  • Gyung-Suk Kil (Department of Electrical and Electronics Engineering, Korea Maritime and Ocean University)
  • 박성관 (한국해양대학교 전기전자공학과) ;
  • 이경렬 (한국해양대학교 전기전자공학과) ;
  • 김남훈 (한국해양대학교 전기전자공학과) ;
  • 김철환 (국토교통부 철도시설안전과) ;
  • 길경석 (한국해양대학교 전기전자공학과)
  • Received : 2023.12.05
  • Accepted : 2023.12.21
  • Published : 2024.03.01

Abstract

In electrical power substations, bulky iron-core potential transformers (PTs) are installed in a tank of gas-insulated switchgear (GIS) to measure system voltages. This paper proposed a low-power voltage transformer (LPVT) that can replace the conventional iron-core PTs in response to the demand for the digitalization of substations. The prototype LPVT consists of a capacitive voltage divider (CVD) which is embedded in a spacer and an impedance matching circuit using passive components. The CVD was fabricated with a flexible PCB to acquire enough insulation performance and withstand vibration and shock during operation. The performance of the LPVT was evaluated at 80%, 100%, and 120% of the rated voltage (38.1 kV) according to IEC 61869-11. An accuracy correction algorithm based on LabVIEW was applied to correct the voltage ratio and phase error. The corrected voltage ratio and phase error were +0.134% and +0.079 min., respectively, which satisfies the accuracy CL 0.2. In addition, the voltage ratio of LPVT was analyzed in ranges of -40~+40℃, and a temperature correction coefficient was applied to maintain the accuracy CL 0.2. By applying the LPVT proposed in this paper to the same rating GIS, it can be reduced the length per GIS bay by 11%, and the amount of SF6 by 5~7%.

Keywords

Acknowledgement

본 연구는 2023년도 산업통상자원부(MOTIE) 및 한국산업기술평가관리원(KEIT)의 지원을 받아 수행한 연구입니다(No.20010965).

References

  1. K. M. Ha, S. H. Kim, G. W. Son, and S. R. Nam, Trans. Korean Inst. Elect. Eng., 71, 55 (2021). doi: https://doi.org/10.5370/KIEE.2022.71.1.055
  2. M. Stefanka, V. Prokop, and G. Salge, Proc. 22nd International Conference and Exhibition on Electricity Distribution (CIRED, Stockholm, Sweden, 2013) p. 103. doi: https://doi.org/10.1049/cp.2013.0563
  3. IEC 61850-9-2:2011, Communication Networks and Systems for Power Utility Automation - Part 9-2: Specific Communication Service Mapping (SCSM) - Sampled Calues over ISO/IEC 8802-3.
  4. N. H. Kim, D. E. Kim, S. H. Lim, G. S. Kil, and J. H. Kim, Proc. KIEEME Annual Summer Conference (KIEEME, Pyengchang, Korea, 2022) p. 52.
  5. J. H. Jeong, D. E. Kim, G. S. Kil, and J. H. Kim, Proc. KIEEME Annual Summer Conference (KIEEME, Pyengchang, Korea, 2023) p. 104.
  6. S. G. Kim, N. H. Kim, G. S. Kil, and K. Y. Kim, Proc. KIEEME Annual Summer Conference (KIEEME, Pyengchang, Korea, 2023) p. 104.
  7. B. Djokic and E. So, Proc. 2004 Conference on Precision Electromagnetic Measurements (IEEE, London, UK, 2005) p. 86. doi: https://doi.org/10.1109/cpem.2004.305453
  8. S. G. Park, D. E. Eon, N. H. Kim, K. Y. Kim, and G. S. Kil, Proc. KIEEME Annual Summer Conference (KIEEME, Pyeongchang, Korea, 2023) p. 61.
  9. D. E. Kim, N. H. Kim, S. G. Kim, J. H. Kim, and G. S. Kil, Proc. KIEEME Annual Summer Conference (KIEEME, Pyeongchang, Korea, 2023) p. 61.
  10. A. Mingotti, L. Peretto, and R. Tinarelli, Sensors, 22, 5804 (2022). doi: https://doi.org/10.3390/s22155804
  11. IEC 61869-1:2023, Instrument Transformers - Part 1: General Requirements.
  12. N. H. Kim, D. E. Kim, S. G. Park, J. H. Jeong, and G. S. Kil, Proc. KIEEME Annual Summer Conference (KIEEME, Pyeongchang, Korea, 2023) p. 105.
  13. IEC 61869-11:2017, Instrument Transformers - Part 11: Additional Requirements for Low Power Passive Voltage TransfOrmers.
  14. J. L. Liu, B. Ye, T. W. Zhan, J. H. Feng, J. D. Zhang, and X. X. Wang, IEEE Trans. Instrum. Meas., 58, 161 (2008). doi: https://doi.org/10.1109/tim.2008.927195
  15. S. H. Lim, N. H. Kim, D. E. Kim, S. G. Kim, and G. S. Kil, J. Korean Inst. Electr. Electron. Mater. Eng., 35, 353 (2022). doi: https://doi.org/10.4313/JKEM.2022.35.4.6
  16. J. Bonkerud, C. Zimmermann, P. M. Weiser, L. Vines, and E. V. Monakhov, Sci. Rep., 11, 12443 (2021). doi: https://doi.org/10.1038/s41598-021-92021-5
  17. D. K. Kim, K. H. Kang, Y. S. Choi, and Y. S. Kwon, J. Korean Inst. Electr. Electron. Mater. Eng., 13, 300 (2000).
  18. J. S. Park, J. H. Kim, and J. U. Lee, J. Korean Inst. Electr. Electron. Mater. Eng., 11, 773 (1998).
  19. J. G. Hyun, S. Lee, S. D. Cho, and K. W. Paik, Proc. Electronic Components and Technology (ECTC, Florida, USA, 2005) p. 1241.
  20. Y. Feng, C. Gao, and E. Gao, Proc. 2022 2nd International Conference on Electrical Engineering and Mechatronics Technology (ICEEMT, Hangzhou, China, 2022) p. 6.
  21. C. Chen, Q. Sun, C. Wang, Y. Bu, J. Zhang, and Z. Peng, Molecules, 25, 4128 (2020). doi: https://doi.org/10.3390/molecules25184128
  22. S. G. Kim, D. E. Kim, N. H. Kim, S. W. Kim, and G. S. Kil, J. Korean Soc. Railw., 25, 621 (2022). doi: https://doi.org/10.7782/JKSR.2022.25.9.621
  23. D. E. Kim, N. H. Kim, S. G. Kim, S. W. Kim, and G. S. Kil, J. Korean Soc. Railw., 26, 268 (2023). doi: https://doi.org/10.7782/JKSR.2023.26.4.268
  24. N. H. Kim, D. E. Kim, S. W. Kim, J. H. Kim, and G. S. Kil, J. Korean Soc. Railw., 26, 445 (2023). doi: https://doi.org/10.7782/JKSR.2023.26.6.445
  25. K. Kumari and S. Yadav, J. Pract. Cardiovasc. Sci., 4, 33 (2018). doi: https://doi.org/10.4103/jpcs.jpcs_8_18