• Title/Summary/Keyword: insulation characteristic

Search Result 283, Processing Time 0.027 seconds

Experiment on the Polish Condition of Needle Electrode on the Insulation Properties of Gas Mixtures (침전극 가공상태에 따른 혼합가스의 절연특성에 관한 실험)

  • Go, Yeon-Seong;Yeo, Dong-Goo;Seo, Ho-Joon;Lee, Dong-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.339-340
    • /
    • 2006
  • AC spark discharge voltage of SF6/CO2and SF6/N2 containing various mixed rate in volume percent (1, 5 and 10%) of SF6 in non-uniform fields are investigated. The needle to plane electrode gap spacing was 5 and 10 mm, and the gas pressure was varied within the range of 0.1~0.7 MPa. We have observed a N-characteristic typical for the electronegative gases even in gas mixtures of 1% SF6 with CO2 and N2 as buffer gases. Especially, the materials of the needle electrode affect the insulation properties of the gas mixtures drastically. On the contrary to the case of needle electrodes made by mild steel or high carbon steel, the N-characteristics are hardly perceived in the case of stainless steel needle in this experiment.

  • PDF

Analysis for Thermal Effect by an Unheated Housing Unit in Apartment (공동주택에서 비난방세대가 미치는 열적 영향)

  • Lee, Eun-Ju;Koo, Junemo;Hong, Hiki
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.1
    • /
    • pp.42-47
    • /
    • 2016
  • Adjacent housing units suffer inevitable thermal losses if an unheated unit exists in an apartment building. Thermal loss of the units adjoining the unheated apartment can be neglected because the contact area is small and insulators are located in the walls. When insulators are not included in the slab between the upper and lower units, 70% of the heat supplied by an Ondol system may be used in the original unit, but 30% is transferred to the unit on the lower floor. Another 30% can be obtained from the ceiling if the upper floor housing unit is heated. This strong thermal connection is a characteristic of Ondol heating in apartment buildings. When there is an unheated unit, the lower floor unit uses 42.3% more heating energy if there is no insulation and 19.5% if a 35 mm insulator is used as in the current guidelines. Therefore, much thicker insulation should be applied to weaken the thermal connection.

A Study of the Physical Properties of Slurry and Mineral Hydrate Insulation Mixed with Polypropylene Fiber (폴리프로필렌 섬유 혼입 슬러리와 미네랄 하이드레이트 단열소재의 물리적 특성에 관한 연구)

  • La, Yun-Ho;Park, Jae-Wan;Chu, Yong-Sik
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.1
    • /
    • pp.13-18
    • /
    • 2015
  • The fabrication method used for mineral hydrate is similar to that of ALC (autoclaved lightweight concrete), but the fabrication of normal slurry with a considerable amount of a foaming agent is difficult due to material separation and collapse of the slurry. Therefore, the development of fabrication methods for normal slurry is necessary. The final product, mineral hydrate insulation, has excellent thermal properties but poor strength characteristic given the many pores. In this study, in order to fabricate normal slurry, the viscosity and foaming time of the slurry were controlled. The mixing ratio of the starting material and the polypropylene fiber was controlled to improve the strength. Mineral hydrate with polypropylene fiber showed a higher strength than that without this type of fiber. Specifically, the compressive strength of mineral hydrate with 2% polypropylene fiber added to it was more than 40% higher than that without the fiber.

The study of ionization and attachment coefficients in $CF_4$ molecular gas by Boltzmann equation (볼츠만 방정식에 의한 $CF_4$ 분자가스의 전리 및 부착계수에 관한 연구)

  • Song, Byoung-Doo;Ha, Sung-Chul;Jeon, Byoung-Hoon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.628-631
    • /
    • 2004
  • A tetrafluoromethane$(CF_4)$ is most useful gas in plasma dry etching, because it has a electron attachment cross-section. therefor it is important to calculate transport coefficients like electron drift velocity, ionization coefficient, attachment coefficient, effective ionization coefficient. and critical E/N. The aim of this study is to get these transport coefficients for information of the insulation strength and efficiency of etching process. Electron transport coefficients in $CF_4+Ar$ gas mixture are simulated in range of E/N values from 1 to 250 [Td] at 300[K} and 1 [Torr] by using Boltzmann equation method. The results of this method can be important data to present characteristic of gas for plasma etching and insulation, specially critical E/N is a data to evaluate insulation strength of a gas. and is presented in this paper for various mixture ratios of $CF_4+Ar$ gas mixture.

  • PDF

The characteristics of mineral hydrate insulation material using activated cement prepared from pilot plant activation system

  • Seo, Sung Kwan;Chu, Yong Sik;Kim, Tae Yeon;Kim, Yoo
    • Journal of Ceramic Processing Research
    • /
    • v.19 no.5
    • /
    • pp.428-433
    • /
    • 2018
  • In this study, using the pilot plant activation system, the activated cement has been manufactured and then applied to the manufacturing process of mineral hydrate insulating material. The fineness of the activated cement is controlled at $5,000cm^2/g$ and $7,500cm^2/g$ and the features of mineral hydrate insulating material, using OPC and the activated cement for each degree of fineness, has been analyzed. As the result of analyzing the crystal habit of the manufactured mineral hydrate insulting material, it is analyzed that the main crystal phase of specimen is tobermorite and some quartz peak has been detected. As the degree of fineness of the activated cement increases, the height of bubble of slurry increases as well, whereas the tendency for the density character to decrease has been detected. Along with it, as the density character decreases, the compression strength has decreases, whereas the tendency for the thermal characteristic to increases has been detected. The main features of mineral hydrate insulating material, using the activated cement with the fineness of $7,500cm^2/g$, the compression strength of 0.36 MPa, and the thermal conductivity of $0.044W/m{\cdot}K$, presents the excellent features as insulation.

Numerical analysis on the critical current evaluation and the correction of no-insulation HTS coil

  • Bonghyun Cho;Jiho Lee
    • Progress in Superconductivity and Cryogenics
    • /
    • v.25 no.1
    • /
    • pp.16-20
    • /
    • 2023
  • The International Electrotechnical Commission (IEC) 61788-26:2020 provides guidelines for measuring the critical current of Rare-earth barium copper oxide (REBCO) tapes using two methods: linear ramp and step-hold methods. The critical current measurement criterion, 1 or 0.1 μV/cm of electric field from IEC 61788-26 has been normally applied to REBCO coils or magnets. No-insulation (NI) winding technique has many advantages in aspects of electrical and thermal stability and mechanical integrity. However, the leak current from the NI REBCO coil can cause distortion in critical current measurement due to the characteristic resistance which causes the radial current flow paths. In this paper, we simulated the NI REBCO coil by applying both linear ramp and step-hold methods based on a simplified equivalent circuit model. Using the circuit analysis, we analyzed and evaluated both methods. By using the equivalent circuit model, we can evaluate the critical current of the NI REBCO coil, resulting in an estimation error within 0.1%. We also evaluate the accuracy of critical current measurement using both the linear ramp and step-hold methods. The accuracy of the linear ramp method is influenced by the inductive voltage, whereas the accuracy of the step-hold method depends on the duration of the hold-time. An adequate hold time, typically 5 to 10 times the time constant (τ), makes the step-hold method more accurate than the linear ramp method.

Protection properties of HTS coil charging by rotary HTS flux pump in charging and compensation modes

  • Han, Seunghak;Kim, Ji Hyung;Chae, Yoon Seok;Quach, Huu Luong;Yoon, Yong Soo;Kim, Ho Min
    • Progress in Superconductivity and Cryogenics
    • /
    • v.23 no.4
    • /
    • pp.19-24
    • /
    • 2021
  • The low normal zone propagation velocity (NZPV) of high-temperature superconducting (HTS) tape leads to a quench protection problem in HTS magnet applications. To overcome this limitation, various studies were conducted on HTS coils without turn-to-turn insulation (NI coils) that can achieve self-protection. On the other hand, NI coils have some disadvantages such as slow charging and discharging time. Previously, the HTS coils with turn-to-turn insulation (INS coils) were operated in power supply (PS) driven mode, which requires physical contact with the external PS at room-temperature, not in persistent current mode. When a quench occurs in INS coils, the low NZPV delays quench detection and protection, thereby damaging the coils. However, the rotary HTS flux pump supplies the DC voltage to the superconducting circuit with INS coils in a non-contact manner, which causes the INS coils to operate in a persistent current mode, while enabling quench protection. In this paper, a new protection characteristic of HTS coils is investigated with INS coils charging through the rotary HTS flux pump. To experimentally verify the quench protection characteristic of the INS coil, we investigated the current magnitude of the superconducting circuit through a quench, which was intentionally generated by thermal disturbances in the INS coil under charging or steady state. Our results confirmed the protection characteristic of INS coils using a rotary HTS flux pump.

A study on the Dielectric Characteristics of Polyimide Organic Ultra Thin Films (폴리이미드 유기초박막의 유전특성에 관한 연구)

  • Chon, D.K.;Lee, K.S.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1744-1746
    • /
    • 1999
  • In this paper, we give pressure stimulation into organic ultra thin films and detected the induced displacement current properties, and then manufacture a device under the accumulation condition. In processing of a device manufacture, we can see the process is good from the change of a surface pressure and transfer ratio of area per molecule of organic ultra thin films. The structure of manufactured device is MIM(Au/polyimide LB films/AU), the number of accumulated 19 layers. I-V characteristic of the device is measured from -5[V] to +5[V]. The maximum value of measured current is increased as the number of accumulated layers are decreased. The insulation of a thin film is better as the interval between electrodes is larger, and the insulation properties of a thin film is better as the distance between electrodes is larger.

  • PDF

Current Limiting Characterics of YBCO Coated Conductor for SFCL According to Insulation (절연층에 따른 전류제한기용 YBCO박막형 선재의 전류제한 특성)

  • Lee, Dong-Hyeok;Du, Ho-Ik;Kim, Min-Ju;Kim, Yong-Jin;Han, Byoung-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.211-211
    • /
    • 2009
  • YBCO coated conductor can change the stabilization layer for purpose and it leads advantages in Improvement of tape's critical properties and Application. Such properties rise possibility of using YBCO coated conductor for Superconductor Fault Current Limiter, therefore, we investigate changing properties under over current condition and limiting characteristics. In this study, YBCO coated conductor's current limiting characteristic stainless steel stabilization layer under condition of changing conductor's insulating layer. Consequently, the resistance followed insulating layer so we know that limiting characteristics.

  • PDF

Angle Ring Press Board Characteristic in Accordance with Temperature and Humidity for High Voltage Transformer (온도와 습도에 따른 초고압 변압기용 앵글링 프레스보드 특성)

  • Suh, Wang Byuck
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.1
    • /
    • pp.60-64
    • /
    • 2020
  • In this study, to develop angle ring pressboards for high voltage transformers, the radius and thickness are modified under the conditions of temperature and humidity. In particular, a pressboard with a thickness of 6 mm and a radius at the angled part were investigated based on the simulation of the principal stress from the angled optimization profile shape. As a result, by the appropriate application of a higher temperature, the solid insulation can be improved to reduce the moisture content for an optimized profile angle of a high voltage transformer. This also results in the improvement of the safety factor by 25%. It is determined that the electrical insulation properties of pressboards in high voltage transformers can be enhanced by improving their properties.