• Title/Summary/Keyword: inspection projector

Search Result 9, Processing Time 0.02 seconds

Development of Inspection Projector with Remote-control Function (원격제어 기능을 갖는 고해상력 투영검사기 개발)

  • Lee, Si-Hyun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2010.07a
    • /
    • pp.199-201
    • /
    • 2010
  • 본 논문에서는 광케이블과 소형렌즈를 검사하기 위한 고해상력 투영검사기를 개발하였다. 개발된 고해상력 투영검사기는 30V/7A 전원장치에서 할로겐램프를 연결하여 원격장치로 램프의 밝기를 조절한다. 개발된 고해상력투영검사기는 관련기술을 확보하였고 수입대체효과를 가져올 수 있다.

  • PDF

Remote NDT for Inspection of Reactor Vessel Components of fast Breeder Test Reactor

  • Anandapadmanaban, B.;Srinivasan, G.;Kapoor, R.P.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.5
    • /
    • pp.520-525
    • /
    • 2003
  • Fast Breeder Test Reactor (FBTR) is a 40MW (thermal) / 13.2MW (electrical), Plutonium - Uranium mixed carbide fuelled, sodium cooled, loop type nuclear reactor operating at Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam. Its main aim is to generate experience in operation of fast reactors and sodium systems and to serve as an irradiation facility for development of fuels and structural materials fur fast reactors. Nuclear reactors pose difficulties to the NDT techniques used to monitor the conditions of the internal components. Sodium cooled fast breeder reactors have their own typical difficulties in using the NDT techniques. These are due to the need for operation in aggressive environment of nuclear radiation and sodium (molten/vapour), as well as the need to maintain leak tightness of a very high order during all states of reactor operation and shutdown for fuel handling, maintenance and remote inspection. This paper discusses the following NDT techniques, which have been successfully used for the past 15 years in FBTR: (i) Periscope and Projector, (ii) Core Co-ordinate Measuring Device and, (iii) Optical fiberscope. The inspection using these techniques have given confidence for further reactor operation at high power by giving useful data on the conditions of the components inside the reactor vessel.

3-D Measurement of LED Packages Using Phase Measurement Profilometry (위상측정법을 이용한 LED Package의 3차원 형상 측정)

  • Koo, Ja-Myoung;Cho, Tai-Hoon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.1
    • /
    • pp.17-22
    • /
    • 2011
  • LEDs(Light Emitting Diodes) are becoming widely used and increasingly in demand. Quality inspection of the LEDs has become more important. Two-dimensional inspection systems are limited in inspection capability, so threedimensional(3-D) inspection systems are needed. In this paper, a cost-effective and simple 3-D measurement system of LED packages using phase measuring profilometry(PMP) is proposed. The proposed system uses a pico projector to project sinusoidal fringe patterns and to shift phases instead of piezocrystal. It was evaluated using extremely accurate gauge blocks, yielding excellent repeatability of about 12 um(3-sigma). 3-D measurements of various LED packages were performed to demonstrate the applicability and efficiency of the proposed system.

Inspection of combination quality for automobile steel balance weight using laser line projector and USB camera (레이저 선 프로젝터와 USB 카메라를 이용한 자동차용 철 밸런스 웨이트의 결합상태 검사)

  • Choi, Kyung Jin;Park, Se Je;Lim, Ho;Park, Chong Kug
    • Journal of the Semiconductor & Display Technology
    • /
    • v.12 no.1
    • /
    • pp.15-21
    • /
    • 2013
  • In this paper, sensor system and inspection algorithm in order to inspect steel balance weight for automobile is described. Steel balance weight is composed of clip and weight, which is joined by press process. The defective one has a gap between clip and weight. To detect whether there is a gap, sensor system is simply configured with laser line projector and USB camera, which make it possible to measure the height difference of clip and weight area. Laser line pattern which is made on the surface of a balance weight is captured by USB camera. In case that USB camera is used in machine vision, barrel distortion caused by wide angle lens makes the captured image distorted. Image warping function is applied to correct the distortion. Simple image processing algorithm is applied to extract the laser line information and whether it is good or not is judged through the extracted information.

A 3D Solder Paste Inspection System Using Multiple Slit Rays (다중 슬릿광을 이용한 3차원 Solder Paste 검사 시스템)

  • Cho, Tai-Hoon;Huh, Byoung-Hweh
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.2
    • /
    • pp.151-157
    • /
    • 2002
  • A 3-dimenstional automatic solder paste inspection system is described that can be used to find defects occurring in solder paste printing process. This system extracts height and volume information very fast as well as area of solder paste printed, using multiple slit ray projection and Galvano-mirror scanning. Methods are presented on calibration of camera and slit projector, real-time image processing of multiple slit images, determination of reference height, and extraction of paste height information are proposed. Performance of the system was successfully demonstrated through field tests.

Development of Structured Light 3D Scanner Based on Image Processing

  • Kim, Kyu-Ha;Lee, Sang-Hyun
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.11 no.4
    • /
    • pp.49-58
    • /
    • 2019
  • 3D scanners are needed in various fields, and their usage range is greatly expanded. In particular, it is being used to reduce costs at various stages during product development and production. Now, the importance of quality inspection in the manufacturing industry is increasing. Structured optical system applied in this study is suitable for measuring high precision of mold, press work, precision products, etc. and economical and effective 3D scanning system for measuring inspection in manufacturing industry can be implemented. We developed Structured light 3D scanner which can measure high precision by using Digital Light Processing (DLP) projector and camera. In this paper, 3D image scanner based on structured optical system can realize 3D scanning system economically and effectively when measuring inspection in the manufacturing industry.

Calibration System Development for Multi-Image (다면 영상을 위한 캘리브레이션 시스템 개발)

  • Han, Jung-Soo;Kim, Gui-Jung
    • Journal of Digital Convergence
    • /
    • v.14 no.8
    • /
    • pp.305-311
    • /
    • 2016
  • If the automated image calibration system is performed in the position of non-experts, an expert will be required in every case inefficiently. But this requires an expert only when absolutely necessary. As well as the rapid system operation and efficient workforce can be managed. Image correction to perform projector inspection and management skills and to filter SW plug-in correction is that special theater system maintenance is not only managed efficiently, but also combined image analysis techniques can improve the technical perfection. This paper is to minimize the economic loss by developing a 10-bit High-depth and high-resolution $360^{\circ}$ projection image analysis technique and is to development of the special theater calibration system to effectively support quality.

The Study on Design of Semiconductor Detector for Checking the Position of a Radioactive Source in an NDT (비파괴검사 분야에서 방사선원의 위치 확인을 위한 반도체 검출기 설계에 관한 연구)

  • Kim, Kyo-Tae;Kim, Joo-Hee;Han, Moo-Jae;Heo, Ye-Ji;Ahn, Ki-Jung;Park, Sung-Kwang
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.3
    • /
    • pp.171-175
    • /
    • 2017
  • In the non-destructive inspection field, we invest a lot of time and resources in developing the radiation source system to ensure the safety of the workers. However, the probability of accidents is still high. In order to prevent potential radiation accidents in advance, it is necessary to directly verify the position of the radiation source, but the research is still insufficient. In this study, we developed a monitoring system that can detect the position of the radiation source in the source guide tube in the gamma-ray irradiator. The characteristics of the radiation detector are estimated by monte carlo simulation. As a result, the radiation detector for Ir-192 gamma-ray energy was analyzed to have secondary electron equilibrium at $150{\mu}m$ regardless of the semiconductor material. Also, it is expected that the gamma ray response characteristic is the best in $HgI_2$. These results are expected to be used as a basis for determining the optimal thickness of the radiation detector located in the detection part of the future monitoring system. In addition, when developing a monitoring system based on this, radiation workers can easily recognize the danger and secure safety, as well as prevent and preemptively respond to potential radiation accidents.

The Study on Design of lead monoxide based radiation detector for Checking the Position of a Radioactive Source in an NDT (비파괴검사 분야에서 방사선원의 위치 확인을 위한 산화납 기반 방사선 검출기 설계에 관한 연구)

  • Ahn, Ki-Jung
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.4
    • /
    • pp.183-188
    • /
    • 2017
  • In recent years, the automatic remote control controller of the gamma ray irradiator malfunctions, and radiation workers are continuously exposed to radiation exposure accidents. In the non-destructive testing field, much time and resources are invested in establishing a radioactive source monitoring system in order to prevent potential incidents of radiation. In this study, the gamma-ray response properties of the lead monoxide-based radiation detector were estimated through monte carlo simulation as a previous study for the development of a radioactive source location monitoring system that can be applied universally to various non-destructive testing equipment. As a result of the study, the optimized thickness of the radiation detector varies according to the gamma-ray energy emitted from the radioactive source, and the optimized thickness gradually increases with increasing energy. In conclusion, the optimized thickness of the lead monoxide-based radiation detector was $200{\mu}m$ for the Ir-192, $150{\mu}m$ for the Se-75 and $300{\mu}m$ for the Co-60. Based on these results, the appropriate thickness of lead monoxide-based radiation detector considering secondary-electron equilibrium was evaluated to be $300{\mu}m$ for general application. These results can be used as a basic data for determining the appropriate thickness required in the radiation detector when developing a radiation source location monitoring system for universal application to various non-destructive testing equipment in the future.