• Title/Summary/Keyword: inorganic oxide

Search Result 299, Processing Time 0.046 seconds

Photoluminescence analysis of Lewis base coordinate europium(III) β-diketonate complex (유로퓸(III) β-디케토네이트 착물의 루이스 염기 배위에 따른 발광 특성 분석)

  • Sung-Hwan, Lee;Gyu-Hwan, Lee
    • Analytical Science and Technology
    • /
    • v.28 no.3
    • /
    • pp.204-211
    • /
    • 2015
  • Lanthanide complexes have attracted much attention because of their unique light emitting property. The light-emitting efficiencies of europium β-diketonate complexes were compared with those of complexes coordinated by the ligands of amines or phosphine oxides. The results demonstrated that the complexes that were coordinated by phosphine oxides had higher light-conversion performance than those coordinated by amines. The highest light-emitting efficiency was observed when the ligand of trioctylphosphine oxide was coordinated. In order to determine the coordination equivalency of trioctylphosphine oxide in the above complexes, 31P-NMR and their photoluminescence spectra were measured. The findings showed that the europium β-diketonate complex had one or two coordination equivalencies of trioctylphosphine oxide according to the steric hindrance of its original ligand.

Preparation and capacitance properties of graphene based composite electrodes containing various inorganic metal oxides

  • Kim, Jeonghyun;Byun, Sang Chul;Chung, Sungwook;Kim, Seok
    • Carbon letters
    • /
    • v.25
    • /
    • pp.14-24
    • /
    • 2018
  • Electrochemical properties and performance of composites performed by incorporating metal oxide or metal hydroxide on carbon materials based on graphene and carbon nanotube (CNT) were analyzed. From the surface analysis by field emission scanning electron microscopy and field emission transmission electron microscopy, it was confirmed that graphene, CNT and metal materials are well dispersed in the ternary composites. In addition, structural and elemental analyses of the composite were conducted. The electrochemical characteristics of the ternary composites were analyzed by cyclic voltammetry, galvanostatic charge-discharge tests, and electrochemical impedance spectroscopy in 6 M KOH, or $1M\;Na_2SO_4$ electrolyte solution. The highest specific capacitance was $1622F\;g^{-1}$ obtained for NiCo-containing graphene with NiCo ratio of 2 to 1 (GNiCo 2:1) and the GNS/single-walled carbon $nanotubes/Ni(OH)_2$ (20 wt%) composite had the maximum specific capacitance of $1149F\;g^{-1}$. The specific capacitance and rate-capability of the $CNT/MnO_2/reduced$ graphene oxide (RGO) composites were improved as compared to the $MnO_2/RGO$ composites without CNTs. The $MnO_2/RGO$ composite containing 20 wt% CNT with reference to RGO exhibited the best specific capacitance of $208.9F\;g^{-1}$ at a current density of $0.5A\;g^{-1}$ and 77.2% capacitance retention at a current density of $10A\;g^{-1}$.

The Organic-Inorganic Hybrid Encapsulation Layer of Aluminium Oxide and F-Alucone for Organic Light Emitting Diodes

  • Gwon, Deok-Hyeon;Seong, Myeong-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.374-374
    • /
    • 2012
  • Nowadays, Active Matrix Organic Light-Emitting Diodes (AM-OLEDs) are the superior display device due to their vivid full color, perfect video capability, light weight, low driving power, and potential flexibility. One of the advantages of AM-OLED over Liquid Crystal Display (LCD) lies in its flexibility. The potential flexibility of AM-OLED is not fully explored due to its sensitivity to moisture and oxygen which are readily present in atmosphere, and there are no flexible encapsulation layers available to protect these. Therefore, we come up with a new concept of Inorganic-Organic hybrid thin film as the encapsulation layer. Our Inorganic layer is Al2O3 and Organic layer is F-Alucone. We deposited these layers in vacuum state using Atomic Layer Deposition (ALD) and Molecular Layer Deposition (MLD) techniques. We found the results are comparable to commercial requirement of 10-6 g/m2 day for Water Vapor Transmission Rate (WVTR). Using ALD and MLD, we can control the exact thin film thickness and fabricate more dense films than chemical or physical vapor deposition methods. Moreover, this hybrid encapsulation layer potentially has both the flexibility of organic layers and superior protection properties of inorganic layer.

  • PDF

Effect of Silicotungstic Acid as Inorganic Filler on the Properties of Anion Exchange Composite Membranes (무기첨가제 규소텅스텐산이 음이온교환 복합막 특성에 미치는 영향)

  • LEE, KYU HA;YOO, DONG JIN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.1
    • /
    • pp.28-37
    • /
    • 2022
  • In this study, we synthesized a poly(pheneylene oxide) (PPO)-based organic/inorganic composite membrane having silicotungstic acid (STA) for the development of an anion exchange membrane with excellent ionic conductivity and physicochemical stability. The organic/inorganic composite membranes were prepared by introducing different STA contents (0 wt%, 10 wt%, 30 wt%, and 50 wt%) into the quaternizaed(Q)-PPO matrix. The prepared anion exchange membranes were subjected to structural analysis by proton neclear magnetic resonance and Fourier transform infrared, and thermal behavior of membranes was confirmed by thermogravimetric analysis. Among the prepared composite membranes, the ion conductivity of Q-PPO/STA-50 (40.5 mS cm-1) showed 1.46 times compared to that of the pristine membrane (27.6 mS cm-1). Therefore, these results demonstrated that organic/inorganic composite membranes are promising candidates for application of anion exchange membranes.

Improving hydrophilic and antimicrobial properties of membrane by adding nanoparticles of titanium dioxide and copper oxide

  • Khosroyar, Susan;Arastehnodeh, Ali
    • Membrane and Water Treatment
    • /
    • v.9 no.6
    • /
    • pp.481-487
    • /
    • 2018
  • Membrane clogging or fouling of the membrane caused by organic, inorganic, and biological on the surface is one of the main obstacles to achieve high flux over a long period of the membrane filtration process. So researchers have been many attempts to reduce membrane fouling and found that there is a close relationship between membrane surface hydrophilicity and membrane fouling, such that the same conditions, a greater hydrophilicity were less prone to fouling. Nanotechnology in the past decade is provided numerous opportunities to examine the effects of metal nanoparticles on the both hydrophilic and antibacterial properties of the membrane. In the present study the improvement of hydrophilic and antimicrobial properties of the membrane was evaluated by adding nanoparticles of titanium dioxide and copper oxide. For this purpose, 4% copper oxide and titanium dioxide nanoparticles with a ratio of 0, 30, 50, and 70% of copper oxide added to the polymeric membrane and compare to the pure polymeric membrane. Comparison experiments were performed on E. coli PTCC1998 in two ways disc and tube and also to evaluate membrane hydrophilic by measuring the contact angle and diameter of pores and analysis point SEM has been made. The results show that the membrane-containing nanoparticle has antibacterial properties and its impact by increasing the percentage of copper oxide nanoparticles increases.

Characterization and Emission/Absorption Study of a Grimm-type Glow discharge source in the application of high frequency Glow Discharge (고주파 글로우 방전을 이용한 GRIMM형 방전원의 특성 및 방출/흡광분석법 연구)

  • Suh, Jung-Gee;Woo, Jin-Chun
    • Analytical Science and Technology
    • /
    • v.7 no.2
    • /
    • pp.155-164
    • /
    • 1994
  • A conventional Grimm-type glow discharge source was constructed and applied to radio-frequency(13.56MHz) discharge for metal and ceramic analysis. We investigated the emission spectrum for aluminium and aluminium oxide and the influence of discharge operating paramaters including argon pressure, rf-power and DC-bias voltages at the sample-side electrode. Scanning Electron Microscope(SEM) also was used to investigate the effect of rf-sputtering on the microstructure formation of the aluminium oxide. Linear analytical calibration curves were constructed for Manganese and zinc element in samples of low alloy steel(BAS 401-405) and brass(NIST 1108-1117).

  • PDF

Surface Active Properties and LCST Behavior of Oligo(propylene oxide-block-ethylene oxide) Allyl Ether Siloxane Surfactants in Aqueous Solution

  • Kim, Doo-Won;Lim, Chul-Hwan;Choi, Jae-Kon;Noh, Si-Tae
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.8
    • /
    • pp.1182-1188
    • /
    • 2004
  • Polydisperse oligo(PO-b-EO) allyl ether siloxane surfactants were synthesized by the hydrosilylation reaction of OMTS with Allyl-oligo(PO-b-EO) series. The surface tension of siloxane surfactants increased with increasing the EO chain length while it decreased with increasing the PO ratio. However, the sedimentation time of the aqueous solution showed opposite trend to the surface tension data. Both the surface tension and sedimentation time of the aqueous solution containing inorganic electrolyte gradually decreased as the content of inorganic electrolyte increased because of the surface arrangement of surfactant molecules. However, they increased with an increase of pH values due to the hydrolysis of the siloxane backbone. The $C_p$ values tended to increase with the increase in the EO chain length and decrease of the PO ratio. It seems that intermolecular interaction between PO/EO block copolymer and water affects the variation of transition temperature.

Iron oxide nanopowder synthesized by electroerosion dispersion (EED) - Properties and potential for microwave applications

  • Halbedel, Bernd;Prikhna, Tatiana;Quiroz, Pamela;Schawohl, Jens;Kups, Thomas;Monastyrov, Mykola
    • Current Applied Physics
    • /
    • v.18 no.11
    • /
    • pp.1410-1414
    • /
    • 2018
  • Magnetic nanoparticles (MNP) have attracted considerable interest in many fields of research and applied science due to their impressive properties. In the past, especially biomedical problems have promoted the development of MNPs. For technical applications e.g. wastewater treatment and absorption of electromagnetic waves, the existing synthesis approaches are too expensive and/or the producible quantities are too low. In this work we present a method for simple preparation of size-controlled magnetic iron oxide nanoparticles by electroerosion dispersion (EED) of carbon steel in water. We describe the synthesis method, the laboratory installation and discuss the structural, chemical and electromagnetic properties of the synthetized EED powders as well as their applicability for microwave absorption compared to other available ferrite powders.

Preparation of Transparent Organic-Inorganic Hybrid Hard Coating Films and Physical Properties by the Content of SiO2 or ZrO2 in Their Films (투명 유-무기 하이브리드 하드코팅 필름 제조 및 SiO2 또는 ZrO2함량에 따른 필름의 물성)

  • Seol, Hyun Tae;Na, Ho Seong;Kwon, Dong Joo;Kim, Jung Sup;Kim, Dae Sung
    • Korean Journal of Materials Research
    • /
    • v.27 no.1
    • /
    • pp.12-18
    • /
    • 2017
  • Transparent organic-inorganic hybrid hard coating films were prepared by the addition of $SiO_2$ or $ZrO_2$, as an inorganic filler to improve the hardness property, filler was highly dispersed in the acrylic resin. To improve the compatibility in the acrylic resin, $SiO_2$ or $ZrO_2$ is surface-modified using various silanes with variation of the modification time and silane content. Depending on the content and kind of the modified inorganic oxide, transparent modified inorganic sols were formulated in acryl resin. Then, the sols were bar coated and cured on PET films to investigate the optical and mechanical properties. The optimized film, which has a modified $ZrO_2$ content of 4 wt% markedly improved in terms of the hardness, haze, and transparency as compared to neat acrylate resin and acrylate resin containing modified $SiO_2$ content of 8 wt%. Meanwhile, the low transparency and high haze of these films slowly appeared at $SiO_2$ content above 10 wt% and $ZrO_2$ content of 5 wt%, but the hardness values were maintained at 2H and 3H, respectively, in comparison with the HB of neat acrylate resin.