DOI QR코드

DOI QR Code

Iron oxide nanopowder synthesized by electroerosion dispersion (EED) - Properties and potential for microwave applications

  • Halbedel, Bernd (Department of Inorganic-Nonmetallic Materials, Institute for Material Engineering, Technische Universit?t Ilmenau) ;
  • Prikhna, Tatiana (Department of Technologies of High Pressures, Functional Ceramic Composites and Dispersed Superhard Materials, V. Bakul Institute for Superhard Material, National Academy of Sciences of Ukraine) ;
  • Quiroz, Pamela (Department of Inorganic-Nonmetallic Materials, Institute for Material Engineering, Technische Universit?t Ilmenau) ;
  • Schawohl, Jens (Department Materials for Electronics, Institute for Material Engineering, Technische Universitat Ilmenau) ;
  • Kups, Thomas (Department Materials for Electronics, Institute for Material Engineering, Technische Universitat Ilmenau) ;
  • Monastyrov, Mykola (Department of Technologies of High Pressures, Functional Ceramic Composites and Dispersed Superhard Materials, V. Bakul Institute for Superhard Material, National Academy of Sciences of Ukraine)
  • Received : 2018.04.25
  • Accepted : 2018.08.08
  • Published : 2018.11.30

Abstract

Magnetic nanoparticles (MNP) have attracted considerable interest in many fields of research and applied science due to their impressive properties. In the past, especially biomedical problems have promoted the development of MNPs. For technical applications e.g. wastewater treatment and absorption of electromagnetic waves, the existing synthesis approaches are too expensive and/or the producible quantities are too low. In this work we present a method for simple preparation of size-controlled magnetic iron oxide nanoparticles by electroerosion dispersion (EED) of carbon steel in water. We describe the synthesis method, the laboratory installation and discuss the structural, chemical and electromagnetic properties of the synthetized EED powders as well as their applicability for microwave absorption compared to other available ferrite powders.

Keywords

References

  1. L. Blaney, paper 5, Magnetite ($Fe_3O_4$): Properties, Synthesis, and Applications vol. 15, Lehigh University Lehigh Preserve, 2007, pp. 33-81 http://preserve.lehigh.edu/caslehighreview-vol-15/5.
  2. S. Bedanta, et al., Magnetic nanoparticles: a subject for both fundamental research and applications, J. Nanomater. 2013 (2013) 1-22. Article ID 952540 https://doi.org/10.1155/2013/952540.
  3. A.G. Kolhatkar, et al., Tuning the magnetic properties of nanoparticles, Int. J. Mol. Sci. 14 (2013) 15977-16009 https://doi.org/10.3390/ijms140815977.
  4. S. Dutz, et al., Magnetic nanoparticles adapted for specific biomedical applications, Biomed. Eng.-Biomed. Tech. 60 (No. 5) (2015) 405-416 https://doi.org/10.1515/bmt-2015-0044.
  5. M.R. Ghazanfari, et al., Perspective of $Fe_3O_4$ nanoparticles role in biomedical applications, Biochem. Res. Int. (2016) 1-32. Article ID 7840161 https://doi.org/10.1155/2016/7840161.
  6. A. Ali, et al., Synthesis, characterization, applications, and challenges of iron oxide nanoparticles, Nanotechnol. Sci. Appl. 9 (2016) 49-67 https://doi.org/10.2147/NSA.S99986.
  7. I. Kong, et al., Magnetic and microwave absorbing properties of magnetite-thermoplastic natural rubber nanocomposites, J. Magn. Magn. Mater. 322 (2010) 3401-3409 https://doi.org/10.1016/j.jmmm.2010.06.036.
  8. Q. Li, et al., Correlation between particle size/domain structure and magnetic properties of highly crystalline $Fe_3O_4$ nanoparticles, Sci. Rep. 7 (2017) 9894https://doi.org/10.1038/s41598-017-09897-5.
  9. H. Danan, et al., New determinations of the saturation magnetization of nickel and iron, J. Appl. Phys. 39 (2) (1968) 669-670. https://doi.org/10.1063/1.2163571
  10. V.H. Gottschalk, The coercive force of magnetite powders, Physics 6 (1935) 127-131. https://doi.org/10.1063/1.1745303
  11. M. Krajewski, Structural and magnetic properties of iron nanowires and iron nanoparticles fabricated through a reduction reaction, Beilstein J. Nanotechnol. 6 (2015) 1652-1660, https://doi.org/10.3762/bjnano.6.167.
  12. M. Monastyrov, et al., Electroerosion dispersion-prepared nano- and submicrometre-sized aluminium and alumina powders as power-accumulating substances, Nanotechnol. Perceptions 4 (2008) 179-187 https://doi.org/10.4024/N08MO08.ntp.04.02.
  13. M. Monastyrov, et al., New technology for the integrated treatment of industrial and landfills waste water using iron and aluminum oxides nanopowders, in: F. Kongoli, F. Marquis, N. Chikhradze, Flogen (Eds.), Proceedings 2017 Sustainable Industrial Processing Summit and Exhibition, Volume 5: Marquis Intl. Symp./New and Advanced Materials &Technologies for Energy, Environment, and Sustainable Development, 2017, pp. 346-355.
  14. N.M. Abbas, et al., A review on current trends in electrical discharge machining (EDM), Int. J. Mach. Tool Manufact. 47 (2007) 1214-1228 https://doi.org/10.1016/j.ijmachtools.2006.08.026.
  15. WO 2014058407 A1. Method for treating aqueous solutions with electro-erosion coagulation, M. K. Monastyrov et al., 2014.
  16. N.B. Shakhova, et al., Pulsed electric discharge in active metallic grains for water purification processes, Procedia Chem. 15 (2015) 292-300 https://doi.org/10.1016/j.proche.2015.10.047.
  17. http://www.micromeritics.com/Product-Showcase/Density.aspx, accessed 02th January 2018.
  18. Sartorius Mikrowaagen, Die Faszination hochster Auflosung und perfekter Funktionalitat, Publication No.: WMC1003-d01095.
  19. Zetasizer 3000 HS User Manual, (1996).
  20. C. Chambers, Modern Inorganic Chemistry, Rhadon - Butterworth &Co (Publishers) Ltd., 1975.
  21. S. Foner, Versatile and sensitive vibrating-sample magnetometer, Rev. Sci. Instrum. 30 (7) (1959) 548-557. https://doi.org/10.1063/1.1716679
  22. M. Anhalt, Magnetische Eigenschaften Weichmagnetischer Komposite, Dissertation TU Clausthal, 2008.
  23. B. Halbedel, M. Nass, Absorbermaterialien für hochfrequente elektromagnetische Felder auf Basis von modifizierten Bariumhexaferritpulvern. Werkstofftechnik Aktuell, vol. 2, Thuringer Werkstofftag, TU Ilmenau, 2010, pp. 169-175.
  24. https://www.mindat.org/min-2538.html, accessed 03th January 2018.
  25. A.F. Hollemann, E. Wiberg, N. Wiberg, Inorganic Chemistry, 1 edition, Academic Press, 2001, pp. 1440-1441.
  26. P. Quiroz, B. Halbedel, A crystallization conditions study of the Ti-doped barium hexaferrite powders synthesized with the glass crystallization technique for microwave applications, Mater. Werkst. 42 (No. 8) (2011) 731-736 https://doi.org/10.1002/mawe.201100716.
  27. B. Halbedel, Elektromagnetische Eigenschaften und Anwendungspotentiale von submikroskaligen, substituierten Hexaferritpulvern, Proceedings Workshop Elektroprozesstechnik. Technische Universitat Ilmenau, Heyda/Ilmenau, 5.-6. Oktober 2017, 2017, pp. 1-17.
  28. https://adhesives.specialchem.com/product/a-evonik-vp-adnano-magsilica, 27.01.2018.
  29. Product Story Nr. 01, Evonik Industries, Ein Zauberhaftes Klebeband, (Juli 2008), p. 31.
  30. WO 2007/101646 A1. Funktionale Papiere fur die Absorption von elektromagnetischen Feldern und Verfahren zu deren Herstellung, B. Halbedel and R. Kirmeier, 05.03.2007.
  31. DE 10 2012 213190 B4. Ferrimagnetischer Partikel, Klebstoff und Verfahren zu deren Herstellung, B. Halbedel, J. Hildebrand, 26.07.2012.
  32. WO 2016 075213 A1. Baustoff zur Abschirmung von elektromagnetischen Wellen durch Absorption, Verfahren zu seiner Herstellung sowie dessen Verwendung, B. Halbedel, U. Schadewald, B. Noack, M. Nas, B. Rickowski, A. Tauber,13.11.2014.
  33. R.C. Pullar, Hexagonal ferrites: a review of the synthesis, properties and applications of hexaferrite ceramics, Prog. Mater. Sci. 57 (2012) 1191-1334 https://doi.org/10.1016/j.pmatsci.2012.04.001.