DOI QR코드

DOI QR Code

Improving hydrophilic and antimicrobial properties of membrane by adding nanoparticles of titanium dioxide and copper oxide

  • Khosroyar, Susan (Department of chemical engineering, Quchan branch, Islamic Azad University) ;
  • Arastehnodeh, Ali (Department of chemical engineering, Quchan branch, Islamic Azad University)
  • Received : 2017.09.23
  • Accepted : 2018.09.18
  • Published : 2018.11.25

Abstract

Membrane clogging or fouling of the membrane caused by organic, inorganic, and biological on the surface is one of the main obstacles to achieve high flux over a long period of the membrane filtration process. So researchers have been many attempts to reduce membrane fouling and found that there is a close relationship between membrane surface hydrophilicity and membrane fouling, such that the same conditions, a greater hydrophilicity were less prone to fouling. Nanotechnology in the past decade is provided numerous opportunities to examine the effects of metal nanoparticles on the both hydrophilic and antibacterial properties of the membrane. In the present study the improvement of hydrophilic and antimicrobial properties of the membrane was evaluated by adding nanoparticles of titanium dioxide and copper oxide. For this purpose, 4% copper oxide and titanium dioxide nanoparticles with a ratio of 0, 30, 50, and 70% of copper oxide added to the polymeric membrane and compare to the pure polymeric membrane. Comparison experiments were performed on E. coli PTCC1998 in two ways disc and tube and also to evaluate membrane hydrophilic by measuring the contact angle and diameter of pores and analysis point SEM has been made. The results show that the membrane-containing nanoparticle has antibacterial properties and its impact by increasing the percentage of copper oxide nanoparticles increases.

Keywords

References

  1. Balta, S., Sotto, A., Luis, P., Benea, L., Van der Bruggen, B. and Kim, J. (2012), "A new outlook on membrane enhancement with nanoparticles: The alternative of ZnO", J. Membr. Sci., 389, 155-161. https://doi.org/10.1016/j.memsci.2011.10.025
  2. Basri, H., Iamail, A.F., Aziz, M., Nagai, K., Matsuura, T., Abdullah, M.S. and Ng, B.C. (2010), "Silver filled polyether sulfone membranes for antibacterial application-Effect of PVP and TAP addition on silver dispersion", Desalination, 261(3), 264-271. https://doi.org/10.1016/j.desal.2010.05.009
  3. Dizge, N., Ozay, Y., Simsek, B., Gulsen, E., Akarsu, C., Turabik, M., Unyayar, A. and Ocakoglu, K. (2017), "Preparation, characterization and comparison of antibacterial property of polyethersulfone composite membrane containing zero valent iron or magnetite nanoparticles", 8(1), 51-71. https://doi.org/10.12989/mwt.2017.8.1.051
  4. Dong, L.X., Yang, H.W., Liu, S., Wang, X.M. and Xi, Y.F. (2015), "Fabrication and anti-biofouling properties of alumina and zeolite nanoparticle embedded ultrafiltration membranes", Desalination, 365, 70-78. https://doi.org/10.1016/j.desal.2015.02.023
  5. Haji Mirza Baba, H., Montazer, H. and Rahimi, M. (2010), "Antimicrobial effects of Nano-silver on nylon carpets", J. Islamic Azad U., 2(21), 101-107.
  6. Hong, J. and He, Y. (2014), "Polyvinylidene fluoride ultrafiltration membrane blended with nano-ZnO particle for photo-catalysis self-cleaning", Desalination, 332, 67-75. https://doi.org/10.1016/j.desal.2013.10.026
  7. Junaidi, M.U., Leo, C.P., Kamal, S.N. and Ahmad, A.L. (2013), "Foulingmitigation in humic acid ultrafiltration using polysulfone/SAPO-34 mixed matrix membrane", Water Sci. Technol., 67(9), 2102-2109. https://doi.org/10.2166/wst.2013.098
  8. Khosravi, R., Akhavan Sepahi, R. and Khanafari, A. (2010), "Effects of antimicrobial silver and copper nanoparticles and compared with vegetative cells and spores with sodium hypochlorite on Bacillus subtilis and Bacillus cereus", J. Microbial Biotechnol. Islamic Azad University, 2(7), 44-37.
  9. Khulbe, K.C., Feng, C. and Matsuura, T. (2010), "The art of surface modification of synthetic polymeric Membranes", J. Appl. Polym. Sci., 115(2), 855-895. https://doi.org/10.1002/app.31108
  10. Kim, J. and Van der Bruggen, B. (2010), "The use of nanoparticles in polymeric and ceramic membrane structures: Review of manufacturing procedures and performance improvement for water treatment", Environ. Pollut., 158(7), 2335-2349. https://doi.org/10.1016/j.envpol.2010.03.024
  11. Kwak, S.Y., Kim, S.H. and Kim, S.S. (2001), "Hybrid organic/inorganic reverse osmosis (RO) membrane for bactericidal antifouling. 1. Preparation and characterization of $TiO_2$ nanoparticle self-assembled aromatic polyamide thinfilm-composite (TFC) membrane", Environ. Sci. Technol., 35, 2388-2394. https://doi.org/10.1021/es0017099
  12. Lee, H.S., Im, S.J., Kim, J.H., Kim, H.J., Kim, J.P. and Min, B.R. (2008), "Polyamide thin-film nanofiltration membranes containing $TiO_2$ nanoparticles", Desalination, 219, 48-56. https://doi.org/10.1016/j.desal.2007.06.003
  13. Leo, C.P., Ahmad Kamil, N.H., Junaidi, M.U.M., Kamal, S.N.M. and Ahmad, A.L. (2013), "The potential of SAPO-44 zeolite filler in fouling mitigation of polysulfone ultrafiltration membrane", Sep. Purif. Technol., 103, 84-91. https://doi.org/10.1016/j.seppur.2012.10.019
  14. Liang, S., Qi, G., Xiao, K., Sun, J., Giannelis, E.P., Huang, X. and Elimelech, M. (2014), "Organic fouling behavior of superhydrophilic polyvinylidene fluoride (PVDF) ultrafiltration membranes functionalized with surface-tailored nanoparticles: implications for organic fouling in membrane bioreactors", J. Membr. Sci., 463, 94-101. https://doi.org/10.1016/j.memsci.2014.03.037
  15. Ma, Y., Shi, F., Zhao, W., Wu, M., Zhang, J., Ma, J. and Gao, C. (2012), "Preparation and characterization of PSf/clay nanocomposite membranes with LiCl as a pore forming additive", Desalination, 303, 39-47. https://doi.org/10.1016/j.desal.2012.07.016
  16. Mulder, M. (1996), "Basic principles of membrane technology", Kluwer Academic Publishers, Dordrecht, the Netherlands.
  17. Rahimpour, A., Jahanshahi, M., Rajaeian and B., Rahimnejad, M. (2011), "$TiO_2$ entrapped Nano-composite PVDF/SPES membranes: Preparation, characterization, antifouling and antibacterial properties", Desalination, 278, 343-353. https://doi.org/10.1016/j.desal.2011.05.049
  18. Ravishankar Rai, V. and Jamuna Bai, A. (2011), "Nanoparticles and their potential application as antimicrobials", Science against Microbial Pathogens: Communicating Current Research and Technological Advances, 3(1), 197-209.
  19. Saleh, T.A. and Gupta, V.K. (2012), "Synthesis and characterization of alumina nano-particles polyamide membrane with enhanced flux rejection performance", Sep. Purif. Technol., 89, 245-251. https://doi.org/10.1016/j.seppur.2012.01.039
  20. Siddiqui, F.A. and Field, R.W. (2016), "Fouling and cleaning of a tubular ultrafiltration ceramic membrane", Membr. Water Treat., 7(5), 433-449. https://doi.org/10.12989/mwt.2016.7.5.433
  21. Soroko, I. and Livingston, A. (2009), "Impact of $TiO_2$ nanoparticles on morphology and performance of crosslinked polyimide organic solvent nanofiltration (OSN) membranes", J. Membr. Sci., 343, 189-198. https://doi.org/10.1016/j.memsci.2009.07.026
  22. Tavakolmoghadam, M., Mohammadi, T., and Hemmati, M. (2016), "Preparation and characterization of PVDF/$TiO_2$ composite ultrafiltration membranes using mixed solvents", Membr. Water Treat., 7(5), 377-384. https://doi.org/10.12989/mwt.2016.7.5.377
  23. Valipoor, P., Sidi, L., Taqi. M. and Moussavian, H. (2012), "Preparation and investigation of properties of polypropylene antibacterial using Nano-coating containing Nano-particles of zinc oxide and titanium dioxide", J. Textile Sci. Technol., 2(1), 63-59.
  24. Yousef, A., Barakat, N.A.M., Amra, T., Deyab, S., Hassan, M.S., Hay, A. and Kim, H.Y. (2012), "Inactivation of pathogenic kelebsiella pneumonia by CuO-$TiO_2$ nano fibers: A multifunctional nanomaterial via on-step electrospinning", Ceramics Int., 38(6), 4525-4532. https://doi.org/10.1016/j.ceramint.2012.02.029
  25. Wang, X.M., Li, X.Y. and Shih, K., (2011), "In situ embedment and growth of anhydrous and hydrated aluminum oxide particles on polyvinylidene fluoride (PVDF) membranes", J. Membr. Sci., 368, 134-143. https://doi.org/10.1016/j.memsci.2010.11.038
  26. Wu, H. and Mansouri, J.V. (2013), "Chen Silica nanoparticles as carriers of antifouling ligands for PVDF ultrafiltration membranes", J. Membr. Sci., 433, 135-151. https://doi.org/10.1016/j.memsci.2013.01.029
  27. Zhou, J., Li, W., Gu, J.S. and Yu, H.Y. (2010), "Surface modification of polypropylene membrane to improve antifouling characteristics in a submerged membranebioreactor: Ar plasma treatment", Membr. Water Treat., 1(1), 83-92. https://doi.org/10.12989/mwt.2010.1.1.083