Browse > Article
http://dx.doi.org/10.5806/AST.2015.28.3.204

Photoluminescence analysis of Lewis base coordinate europium(III) β-diketonate complex  

Sung-Hwan, Lee (Inorganic and Organometallic Chemistry Lab., Department of Chemistry, Hannam University)
Gyu-Hwan, Lee (Inorganic and Organometallic Chemistry Lab., Department of Chemistry, Hannam University)
Publication Information
Analytical Science and Technology / v.28, no.3, 2015 , pp. 204-211 More about this Journal
Abstract
Lanthanide complexes have attracted much attention because of their unique light emitting property. The light-emitting efficiencies of europium β-diketonate complexes were compared with those of complexes coordinated by the ligands of amines or phosphine oxides. The results demonstrated that the complexes that were coordinated by phosphine oxides had higher light-conversion performance than those coordinated by amines. The highest light-emitting efficiency was observed when the ligand of trioctylphosphine oxide was coordinated. In order to determine the coordination equivalency of trioctylphosphine oxide in the above complexes, 31P-NMR and their photoluminescence spectra were measured. The findings showed that the europium β-diketonate complex had one or two coordination equivalencies of trioctylphosphine oxide according to the steric hindrance of its original ligand.
Keywords
europium β -diketonate; EuFOD; lanthanide; down shifting; trioctylphosphine oxide;
Citations & Related Records
연도 인용수 순위
  • Reference
1 B. L. An, J. X. Shi, W. K. Wong, K. W. Cheah, R. H. Li, Y. S. Yanf and M. L. Gong, J. Lumin, 99, 155-160 (2002).   DOI   ScienceOn
2 K. Binnemans, Chem. Rev., 109, 4283-4374 (2009).   DOI   ScienceOn
3 H. R. Li, J. Lin, H. J. Zhang, L. S. Fu, Q. G. Meng and S. B. Wang, Chem. Mater., 14, 3651-3655 (2002).   DOI   ScienceOn
4 O. Laporte and W. F. Meggers, J. Optical Society Am, 11, 459-462 (1925).   DOI
5 S. I. Weissman, J. Chem. Phys., 10, 214-217 (1942).   DOI
6 A. Beeby, I. M. Clarkson, R. S. Dickins, S. Faulkner, D. Parker, L. Royle, A. S. de Sousa, J. A. Gareth Williams and M. Woods, J. Chem. Soc. Perkin Trans., 2, 493-503 (1999).
7 A. I. Voloshin, N. M. Shavaleev and V. P. Kazakov, J. Luminescence., 93, 191-197 (2001).   DOI   ScienceOn
8 A. H. Bruder, S. R. Tanny, H. A. Rockefeller and C. S. Springer, Inorg. Chem., 13, 880-885 (1974).   DOI
9 M. Haase and H. Schaefer, Angew. Chem., Int. Ed., 50, 5808-5829 (2011).   DOI   ScienceOn
10 A. Shalav, B. S. Richards, T. Trupke, K. W. Kramer and H. U. Gudel, J. Appl. Phys. Lett., 86, 013505 (2005).   DOI   ScienceOn
11 M. Pollnau, D. R. Gamelin, S. R. Luthi, H. U. Luthi and M. P. Hehlen, Phys. Rev., 61, 3337-3346 (2000).   DOI   ScienceOn
12 G. Vicentini, L. B. Zinner, J. Zukerman-Schpector and Zinner, K. Coordination Chem. Rev., 196, 353-382 (2000).   DOI   ScienceOn
13 N. B. Lima, S. M. Goncalves, S. A. Junior and A. M. Simas, Sci. Reports., 3, 2395-2302 (2013).   DOI
14 L. B. Melby, N. J. Rose, E. Abramson and J. C. Caris, J. Am. Chem. Soc., 86, 5117-5125 (1964).   DOI
15 S. M. Mattson, E. J. Abramson and L. C. Thomson, J. less-common Metals., 112, 373-380 (1985).   DOI   ScienceOn
16 A. T. Kandil and K. Farah, J. Inorg. Nucl. Chem., 42, 1491-1494 (1980).   DOI   ScienceOn
17 H. Iwanaga, A. Amano, F. Furuya and Y. Yamasaki, Jpn. J. Apply. Phys., 45, 558-562 (2006).   DOI
18 B. S. Richards, Sol. Energy Mater. Sol. Cells., 90, 2329-2337 (2006).   DOI   ScienceOn
19 G. Blasse, J. Chem. Phys., 45, 2356-2360 (1966).   DOI
20 T. Trupke, M. A. Green and P. Wurfel, J. Appl. Phys., 92, 1668-1674 (2002).   DOI   ScienceOn
21 J. Chrysochoos, J. Chem. Phys., 60, 1110-1112 (1974).   DOI
22 M. Montalti, L. Prodi, N. Zaccheroni, L. Charbonniere, L. Douce and R. Ziessel, J. Am. Chem. Soc., 123, 12694-12695 (2001).   DOI   ScienceOn
23 C. Strumpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Svrcek, V. Svrcek, del C. Canizo and I. Tobias, Sol. Energy Mater. Sol. Cells., 91, 238-249 (2007).   DOI   ScienceOn