• Title/Summary/Keyword: inorganic material

Search Result 937, Processing Time 0.031 seconds

The Study of fabrication and characteristics of Inorganic EL Device with combination of high dielectric constant layer (고유전 유전막을 적용한 Inorganic EL Device 제작 및 특성 연구)

  • Lee, Gun-Sub;Ryu, Ji-Ho;An, Sung-Il;Lee, Seong-Eui
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.392-393
    • /
    • 2007
  • In this paper, we report the characteristics inorganic EL device with high dielectric constant materials of PMN, PZT. Fabricated EL device shows stable light emission even at 20kHz -400Volt without any break down failure. Brightness voltage curve of EL device is same with typical EL. As increasing applied voltage, the brightness increased linearly. From the results of Frequency and duty ratio variation, over 50% of brightness increment was seen. Luminous efficiency was increased upto 200V range and saturated over 200V by slow increasement of light emission. We got e bright stable emission of 1733 cd/m2 at the condition of Frequency 35 KHz, Duty 10%, 400V.

  • PDF

Improving Strength in Casting Mold by Control of Starting Material and Process

  • Cho, Geun-Ho;Kim, Eun-Hee;Jung, Yeon-Gil
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.5
    • /
    • pp.541-547
    • /
    • 2016
  • In developing high temperature molds with advantages of the sand and precision (investment) castings, mechanical properties of the mold were improved through homogeneous coating of starting powders with an inorganic binder and improvement of fabrication process. Beads with mullite composition were employed for properties of the mold under high temperature, which was compared with artificial sands. Precursors of silica and sodium oxide were used as starting materials for an inorganic binder to achieve homogeneous coating on the starting powders. Strength was enhanced by the glass phase converted from the inorganic binder through heat treatment process. Also, two kinds of process, wet and dry processes, were incorporated to prepare mold specimens. Consequently, fabrication process of the mold with superior strength and high temperature applicability, compared with the previous molds for sand casting, could be suggested through control of the starting material and enhancement of the vitrification efficiency.

Synthesis and Characterization of Dense $Ti_{0.5}Zr_{0.5}B_2$ Solid Solutions by Electrically-Stimulated Combustion

  • Lee, H. B.;Kim, S. J.;Y. H. Han;J. E. Garay;Zuhair A. Munir
    • The Korean Journal of Ceramics
    • /
    • v.6 no.2
    • /
    • pp.172-176
    • /
    • 2000
  • Solid solutions of Ti$_{0.5}$Zr$_{0.5}$B$_2$were successfully synthesized and densified simultaneously from elemental reactants by the use of a field-activated, pressure-assisted synthesis method. The method involves the application of an electric current and mechanical pressure across reactant compacts to achieve combustion synthesis. Dense solid solutions with relative densities of up to 99% were produced and characterized by XRD, SEM, and EPMA methods. With a maximum measured temperature of 145$0^{\circ}C$ under a load of 86 MPa for 30 min, the desired dense solid solution wad synthesized.

  • PDF

Study on Dielectrics and Insulator of Diopside-Anorthite System (Diopside-Anorthite계의 유전체 및 절연체에 관한 연구)

  • Ahn, Young-Pil;Chung, Bok-Hwan;Kim, il-Ki;Lee, Kwang
    • Journal of the Korean Ceramic Society
    • /
    • v.16 no.2
    • /
    • pp.77-82
    • /
    • 1979
  • Diopside-Anorthite body was easily synthesized at relatively low temperature 1225℃, compared with the synthesizing temperature 1425℃ of Anorthite. Of Diopside-Anorthite body, the synthesizing temperature was considered to be higher than 1225℃ because Gehlenite, probably formed at 1220℃, was detected by X-ray diffraction. This body has excellent physical and electrical properties, i.e. electric resistivity (1.2×1014Ωcm), low dielectric constant (6.26) and low thermal expansion coeffcient (61.9×10-7/℃). It's hardness was good enough for electrical subsidiary. In addition, this body, Diopside-Anorthite, has exellent properties for heat resisting wares.

  • PDF

A Study on the Chemical Compositions of Jeju Basalt for the Development of an Inorganic Insulation Material (무기 내화 단열재 개발을 위한 제주도 현무암의 화학조성에 대한 연구)

  • Gang, Myung-Bo;Kam, Sang-Kyu;Kim, Nam-Jin
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.15 no.3
    • /
    • pp.1-6
    • /
    • 2019
  • The basalt fiber, which is found to be non-toxic and harmless to the human body, is expected to become a trend for industrial fibers as they have better properties of non-combustion, heat-resistant, soundproof, absorbent, moistureproof, wear-resistant, corrosion resistant, lightweight, and high strength properties. Thus, in this study, we analyzed the chemical compositions of basalt produced at seven sites on Jeju Island for making a high value inorganic insulation material. The results showed that the MgO content of basalt collected from the eastern part of Jeju Island was higher than 7.5 percent, while that of the western region was less than 6 percent.

Annealing effects of organic inorganic hybrid silica material with C-H hydrogen bonds (C-H 수소결합을 갖는 유무기 하이브리드 물질에서의 열처리 효과)

  • Oh, Teresa
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.11
    • /
    • pp.20-25
    • /
    • 2007
  • In this paper, It was reported the dielectric constant in organic inorganic hybrid silica material such as SiOC film modeling of bond structure by annealing in organic properties. The organic inorganic hybrid silica material were deposited using bis-trimethylsilymethane (BTMSM, [(CH3)3Si]2CH2) and oxygen gas precursor by a plasma chemical vapor deposition (CVD). The organic inorganic hybrid silica material have three types according to the deposition condition. The dielectric constant of the films were performed MIS(Al/Si-O-C film/p-Si) structure. The C 1s spectra in organin inorganic silica materials with the flow rate ratio of O2/BTMSM=1.5 was organometallic carbon with the peak 282.9 eV by XPS. It means that organometallic carbon component is the cross-link bonding structure with good stability. The dielectric constant was the lowest at annealed films with cross-link bonding structure.

A Study on Fabrication and Characterization of Inorganic Insulation Material by Hydrothermal Synthesis Method (1) (수열합성법을 이용한 무기계 단열소재 제조방법 및 특성에 관한 연구 (1))

  • Seo, Sung-Kwan;Chu, Yong-Sik;Lee, Jong-Kyu;Song, Hun;Park, Jae-Wan
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.1 no.3
    • /
    • pp.219-224
    • /
    • 2013
  • In this study, the inorganic insulating material was fabricated with quartzite, ordinary portland cement(OPC), lime and anhydrous gypsum. After characteristic analysis of slurry, the optimum mixing ratio was derived with different $CaO/SiO_2$ mole ratio. Based on derived mixing ratio, the inorganic insulating material was fabricated at different water content and hydrothermal synthesis conditions. Specific gravity was $0.26g/cm^3$, compressive strength was 0.4 MPa, and thermal conductivity was 0.064 W/mK. This properties were enhanced performance of conventional ALC (Autoclaved Lightweight Concrete). And it can replace organic insulation with harmless inorganic insulation through continues research and development.

CHARACTERISTICS OF FIRE PROTECTIVE COATING THE TERNARY SOLUBLE SILICATE

  • Lee, Nae-Woo;Choi, Jae-Wook;Kim, Jeong-Hun
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 1997.11a
    • /
    • pp.120-129
    • /
    • 1997
  • The fire protective coating can reduce certain damages in case of fire, also conserve energy by thermal insulation and prevent corrosion and errosion in normal daily life by means of blocking thermal transfer, that were generally made of organic, inorganic and metallic materials as adiabatic coating. In case of inorganic material such as soluble silicate, it produces less toxic substances which are exposed to Ore, and have a plenty of raw material. Also inorganic thermal insulator is good in heat resistance. To develope such a excellent inorganic thermal insulator, the study of fire protective coating using the alkali silicate is necessary The principle of intumescence for alkali silicate is from rapid evolution of water in the coating material, the quantity of water in it is of course influenced on the degree of intumescence. The phenomenon of intumescence in ternary silicate is increased as the radius of ion is bigger, and this is caused by evolution of so many kinds of water. The individual degree of intumescence is ordered like this ; $K^+$ > $Na^+$ > $Li^+$ . The best protection effect is similarity found to intumescence of ternary silicate. The result of X-ray diffraction analysis indicates that $KHSi_2O_5$ is an important ingredient in K-silicate.

  • PDF

Removal of Volatile Organic Compounds with Organic-Inorganic Hybrid Mesoporous Materials (유·무기 혼성 메조포러스 물질의 휘발성 유기화합물 제거능)

  • Jeong, Han Mo;La, Young Soo;An, Jin Hee;Jo, Ah Young;Choi, Mi Yeon;Kim, Suck Man;Moon, Nam Gu;Yoon, Young Ho
    • Applied Chemistry for Engineering
    • /
    • v.16 no.5
    • /
    • pp.719-723
    • /
    • 2005
  • Organic-inorganic hybrid mesoporous materials were prepared by co-condensation of organosilanes with tetraethyl orthosilicate (TEOS) or 1,2-bis(triethoxysilyl) ethane (BTSE). Their removal capability of volatile organic compounds (VOCs) in the air was evaluated and compared with that of inorganic hydrophilic mesoporous material, SBA-15 that was prepared with TEOS only. It was found that the increased hydrophobicity of mesoporous materials due to the presence of organic group, could enhance the VOCs removal by adsorption in the air. An organic-inorganic hybrid material prepared by the co-condensation of BTSE/phenyl triethoxysilane (90/10 by weight) was a typical example of superior adsorbent. It was also observed that these organic-inorganic hybrid materials can be utilized as absorbents for the removal of oil dispersed in water.

Experimental Study on the Material Characteristics of Concrete Surface Preparator with Inorganic Composite (무기질 복합체를 이용한 콘크리트 면처리재의 재료특성에 관한 실험적 연구)

  • 서치호;홍순조;전현규
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.3
    • /
    • pp.206-212
    • /
    • 2001
  • The purpose of this experimental study was to investigate the material properties of concrete surface preparator with inorganic composite, which was modified with plaster and admixture. A series of experiment were conducted to appraise the properties according to KS F 4716. The experimental results were as follows ; When the concrete surface preparator with inorganic composite was used, the hair crack and split, due to early drying shrinkage, was little. So it is superior to concrete surface preparator with cement paste plaster The bonding strength of concrete surface preparator with inorganic composite increased about 60% compared to that of concrete surface preparator with cement paste plaster. The workability of surface flatness and finishing was superior compared to that of existing concrete surface preparator. All specifications on concrete surface preparator were satisfied in the series of this experiments. Therefore, the concrete surface preparator with inorganic composite might be satisfactory applied in field due to its superior material properties.