Removal of Volatile Organic Compounds with Organic-Inorganic Hybrid Mesoporous Materials

유·무기 혼성 메조포러스 물질의 휘발성 유기화합물 제거능

  • Received : 2005.06.29
  • Accepted : 2005.08.05
  • Published : 2005.10.10

Abstract

Organic-inorganic hybrid mesoporous materials were prepared by co-condensation of organosilanes with tetraethyl orthosilicate (TEOS) or 1,2-bis(triethoxysilyl) ethane (BTSE). Their removal capability of volatile organic compounds (VOCs) in the air was evaluated and compared with that of inorganic hydrophilic mesoporous material, SBA-15 that was prepared with TEOS only. It was found that the increased hydrophobicity of mesoporous materials due to the presence of organic group, could enhance the VOCs removal by adsorption in the air. An organic-inorganic hybrid material prepared by the co-condensation of BTSE/phenyl triethoxysilane (90/10 by weight) was a typical example of superior adsorbent. It was also observed that these organic-inorganic hybrid materials can be utilized as absorbents for the removal of oil dispersed in water.

Tetraethyl orthosilicate (TEOS) 혹은 1,2-bis(triethyoxysilyl)ethane (BTSE)과 여러 종류의 organosilane들을 공중합하여 유 무기 혼성 메조포러스 물질들을 제조하고, 이들이 공기 중의 휘발성 유기화합물(VOC)들을 흡착 제거하는 능력을, TEOS 만을 사용하여 제조한 친수성 무기 메조포러스물질인 SBA-15와 비교 평가하였다. 유기 구조의 도입에 의한 소수성의 증대는 메조포러스 물질이 VOC를 흡착 제거하는데 긍정적 효과를 줌을 관찰하였다. 특히 BTSE와 phenyl triethoxysilane을 중량비 90:10으로 공중합한 유 무기 혼성 메조포러스 물질의 VOC 제거 능력은 우수하였다. 또, 물속에 분산된 기름 성분을 흡착 제거하는데 유 무기 혼성 메조포러스 물질들을 유용하게 응용할 수 있음도 정성적으로 관찰하였다.

Keywords

Acknowledgement

Supported by : 산업기술재단

References

  1. A. M. Liu, K. Hidajat, S. Kawi, and D. Y. Zhao, Chem. Commun., 1145 (2000)
  2. A. S. M. Chong and X. S. Zhao, J. Phys. Chem. B, 107, 12650 (2003) https://doi.org/10.1021/jp035877+
  3. X. S. Zhao, G. Q. Lu, A. K. Whittaker, G . J. Millar, and H. Y. Zhu, J. Phys. Chem. B, 101, 6525 (1997) https://doi.org/10.1021/jp971366+
  4. L. Chen, T. Horiuchi, T. Mori, and K. K. Maeda, J. Phys. Chem. B, 103, 1216 (1999) https://doi.org/10.1021/jp983100o
  5. M. Hartmann and A. Vinu, Langmuir, 18, 8010 (2002) https://doi.org/10.1021/la025782j
  6. B. L. Newalkar, N. V. Choudary, U. T. Turaga, R. P. Vijayalakshmi, P. Kumar, S. Komarneni, and T. S. G. Bhat, Chem. Mater., 15, 1474 (2003) https://doi.org/10.1021/cm020889d
  7. M. A. Hernandex and J. A. Velasco, lnd. Eng. Chem. Res., 43, 1779 (2004)
  8. J.-H. Choi, H.-J. Kim, Y.-K. Lee, H. S. Jung, and K. S. Hong, 15, 191 (2004)
  9. M. H. Lim and A. Stein, Chem. Mater., 11, 3285 (1999) https://doi.org/10.1021/cm990369r
  10. M. Kruk and M. Jaroniec, Chem. Mater., 13, 3169 (2001) https://doi.org/10.1021/cm0101069
  11. B. J. Melde, B. T. Holland, C. F. Blanford, and A. Stein, Chem. Mater., 11, 3302 (1999) https://doi.org/10.1021/cm9903935
  12. S. Inagaki and S. Guan, Mat. Res. Symp. Proc., 726, 225 (2002)
  13. D. Zhao, Q. Huo, .I. Feng, B. F. Chmelka, and G. D. Stucky, J. Am. Chem. Soc., 120, 6024 (1998) https://doi.org/10.1021/ja974025i
  14. M. A. Markowitz, J. Klaehn, R. A. Hendel, S. B. Qadriq, S. L. Golledge, D. G. Castner, and B. P. Gaber, J. Phys. Chem. B, 104, 10820 (2000) https://doi.org/10.1021/jp0008389
  15. A. C. C. Chang, S. S. C. Chuang, M. Gray, and Y. Soong, Energy & Fuels, 17, 468 (2003) https://doi.org/10.1021/ef020176h
  16. C. M. Bambrough, R. C. T. Slade, and R. T. Williams, J. Mater. Chem., 8, 569 (1998) https://doi.org/10.1039/a706328h
  17. A. Stein, B. J. Melde, and R. C. Schroden, Adv. Mater., 12, 1403 (2000) https://doi.org/10.1002/1521-4095(200010)12:19<1403::AID-ADMA1403>3.0.CO;2-X
  18. M. H. Lim and A. Stein, Chem. Mater., 11, 3285 (1999) https://doi.org/10.1021/cm990369r