• Title/Summary/Keyword: inorganic components

Search Result 408, Processing Time 0.026 seconds

A COMPARISON OF THE SETTING CHARACTERISTICS BETWEEN RESIN-MODIFIED GLASS-IONOMERS AND COMPOMERS (Resin-Modified Glass-Ionomer와 Compomer의 경화 반응 특성의 비교에 관한 연구)

  • Ko, Yong-Joon;Yoo, Hyeon-Mee;Um, Chung-Moon
    • Restorative Dentistry and Endodontics
    • /
    • v.25 no.1
    • /
    • pp.123-132
    • /
    • 2000
  • To overcome problems of conventional glass ionomers, resin components have been added to glass ionomers. On a continuum between glass ionomers and composites are a variety of blends, employing different proportions of acid-base and free radical reactions to bring about cure. Popular groups defined between the ends are resin-modified glass-ionomers(RMGIs), polyacid-modified composite resins(Compomers) and ionomer modified resins. These groups show different clinical properties, and in selecting these materials for a restoration, one should sufficiently understand these different setting properties. In this study, some difference in the setting characteristics of different groups of hybrid ionomers were examined. Two RMGIs (Fuji2 LC,GC / Vitremer, 3M), three Compomers (Dyract AP, Dentsply / F2000, 3M / Elan, Kerr) were involved in this study. The identification of the setting characteristics of different groups was achieved by a two-stage study. First, thermal analysis was performed by a differential scanning calorimeter, and then the hardness of each group at different depth and time were measured by a micro-hardness tester. Thermal analysis was performed to identify the inorganic filler content and to record the heat change during setting process. The setting process was progressed for each material by chemical set mode and light-cured mode. In the hardness test, samples of materials were prepared with a 6mm-diameter metal ring, and the hardness was measured at the top, and 1mm, 2.5mm, 4mm below at just after a 40 second-cure, and after 10 minutes, 24 hours, and 7 days. Statistical analysis was performed by Mann-Whitney rank sum test to assess significant differences between set modes and types of materials, and by ANOVA and T-test to evaluate the statistical meanings of data at different times and depths of each materials. Followings are findings and conclusions derived from this study. Thermal analysis; 1. Compomers show no evidence of chemical setting while RMGIs exhibit heat output during the process of chemical setting. 2. Heat of cure of RMGIs exceed Compomers. 3. The net heat output of RMGIs through light-cured mode is higher than through chemically set mode. Hardness test; 1. Initial hardness of RMGIs immediately after light cure is relatively low, but the hardness increases as time goes by. On the contrary, Comomers do not show evident increase of the hardness following time. 2. Compomers show a marked decrease of setting degree as the depth of the material increases. In RMGIs, the setting degree at different depths does not significantly differ.

  • PDF

Proteomic Analyses of Chinese Cabbage(Brassica campestris L. pekinensis) Affected by High Temperature Stresses in Highland Cultivation During Summer in Korea (Proteomics를 이용한 고랭지 배추의 고온장해 해석)

  • Shin, Pyung-Gyun;Hong, Sung-Chang;Chang, An-Cheol;Kim, Sang-Hyo;Lee, Ki-Sang
    • Journal of Life Science
    • /
    • v.17 no.12
    • /
    • pp.1649-1653
    • /
    • 2007
  • High temperature stresses have caused growth inhibition and delayed heading in highland cultivation Chinese cabbage during summer in Korea. We have studied high temperature stress responses in the terms of changes of inorganic components and proteins by proteomic analyses. Insufficiencies of nitrogen and phosphorus have affected growth rate and calcium deficiency has caused blunted heading. Proteins extracted from Brassica seedling grown at the altitude of 600m and 900m in the Mount Jilun were extracted and analysed by 2-dimentional polyacrylamide gel electrophoresis. Profiles of protein expression was then analyzed by 2-dimentional gel analyses. Protein spots showing different expression level were picked using the spot handling workstation and subjected to MALDI-TOF MS. Total 48 protein spots were analyzed by MALDI-TOF MS and 30 proteins spots out of 48 were identified by peptide mass fingerprinting analyses. Fourteen proteins were up-regulated in extracts from the altitude of 900m and they were identified as oxygen-evolving proteins, rubisco activase and ATPase etc. Sixteen proteins were up-regulated in extracts from the altitude of 600m and they were identified as glutathione S-transferase(1, 28kD cold induced- and 24 kD auxin-binding proteins) and salt-stress induced protein etc. These stress-induced proteins were related to the mediated protective mechanism against oxidative damage during various stresses. The results indicated that physiological phenomenon in response to high temperature stresses might be resulted by complex and multiple array of responses with drought, heat, oxidative, salt, and cold by high temperature.

The Loads and Biogeochemical Properties of Riverine Carbon (하천 탄소의 유출량과 생지화학적 특성)

  • Oh, Neung-Hwan
    • Korean Journal of Ecology and Environment
    • /
    • v.49 no.4
    • /
    • pp.245-257
    • /
    • 2016
  • Although rivers cover only 0.5% of the total land area on the Earth, they are windows that show the integrated effects of watershed biogeochemistry. Studies on the loads and properties of riverine carbon have been conducted because they are directly linked with drinking water quality, and because regional or global net ecosystem production (NEP) can be overestimated, unless riverine carbon loads are subtracted. Globally, ${\sim}0.8-1.5Pg\;yr^{-1}$ and ${\sim}0.62-2.1Pg\;yr^{-1}$ of carbon are transported from terrestrial ecosystems to the ocean via rivers and from inland waters to the atmosphere, respectively. Concentrations, ${\delta}^{13}C$, and fluorescence spectra of riverine carbon have been investigated in South Korea to understand the spatiotemporal changes in the sources. Precipitation as well as land use/land cover can strongly influence the composition of riverine carbon, thus shifting the ratios among DIC, DOC, and POC, which could affect the concentrations, loads, and the degradability of adsorbed organic and inorganic toxic materials. A variety of analyses including $^{14}C$ and high resolution mass spectroscopy need to be employed to precisely define the sources and to quantify the degradability of riverine carbon. Long-term data on concentrations of major ions including alkalinity and daily discharge have been used to show direct evidence of ecosystem changes in the US. The current database managed by the Korean government could be improved further by integrating the data collected by individual researchers, and by adding the major components ions including DIC, DOC, and POC into the database.

An Empirical Study of the Analytical Measurement Range in Clinical Chemistry (분석측정범위의 실증적 평가)

  • Chang, Sang-Wu;Lee, Sang-Gon;Kim, Young-Hwan;Song, Eun-Young;Park, Yong-Won;Park, Byong-Ok;Lyu, Jae-Gi
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.38 no.2
    • /
    • pp.117-124
    • /
    • 2006
  • The analytical measurement range (AMR) is the range of analyte values that a method can directly measure on a specimen without any dilution, concentration, or other pretreatment not part of the usual assay process. The linearity of the AMR is its ability to obtain test results which are directly proportional to the concentration of analyte in the sample from the upper and lower limit of the AMR. The AMR validation is the process of confirming that the assay system will correctly recover the concentration or activity of the analyte over the AMR. The test specimen must have analyte values which, at a minimum, are near the low, midpoint, and high values of the AMR. The AMR must be revalidated at least every six months, at changes in major system components, and when a complete change in reagents for a procesure is introduced; unless the laboratory can demonstrate that changing the reagent lot number does not affect the range used to report patient test results. The AMR linearity was total protein (0-16.6), albumin (0-8.1), total bilirubin (0-18.1), alkaline phosphatase (0-1244.3), aspartate aminotransferase (0-1527.9), alanine aminotransferase (0-1107.9), gamma glutamyl transpeptidase (0-1527.7), creatine kinase (0-1666.6), lactate dehydrogenase (0-1342), high density lipoprotein cholesterol (0.3-154.3), sodium (35.4-309), creatinine (0-19.2), blood urea nitrogen (0.5-206.2), uric acid (0-23.9), total cholesterol (-0.3-510), triglycerides (0.7-539.6), glucose (0-672.7), amylase (0-1595.3), calcium (0-23.9), inorganic phosphorus (0.03-17.0), potassium (0.1-116.5), chloride (3.3-278.7). We are sure that materials for the AMR affect the evaluation of the upper limit of the AMR in the process system.

  • PDF

Analysis of nutritional contents and useful functional materials for finding breeding resources in Flammulina velutipes (팽이 기능성 육종소재 발굴을 위한 영양성분 및 유용 기능성 물질 분석)

  • Ji-Hoon, Im;Minji, Oh;Youn-Lee, Oh;Min-Sik, Kim;Jong-Won, Lee
    • Journal of Mushroom
    • /
    • v.20 no.4
    • /
    • pp.218-226
    • /
    • 2022
  • Flammulina velutipes, known as winter mushroom in the family of Physalacriaceae, is the main edible and export mushroom with the third highest production after oyster and king oyster mushroom in Korea. However, as normal consumers regard F. velutipes as a simple subsidiary material, there is a limitation to increasing mushroom demand. In order to overcome the consumption limit and increase the differentiation of new varieties, it is necessary to breed varieties with enhanced functionality in consideration of consumer preferences. Therefore, the study was performed to analyze nutrient components and several useful functional substances with 26 genetic resources of F. velutipes. Analyses of inorganic compound(Ca, K, Mg) and 15 amino acids revealed that Strain 4148 had the highest content among the 26 strains. Beta-glucan, which increases immune activity and polyphenol, which exert antioxidant effects were higher in non-white strains than in white strains with a small number of exceptions. Among the five fatty acids, linoleic acid(an omega-6 fatty acid) and α-linolenic acid(an omega-3 fatty acid), were detected in six mushroom strains. α-linolenic acid, which was not found in five major mushrooms including oyster mushrooms, was identified in F. velutipes. The results of HPLC analysis showed that 'Auram' (Strain 4232) and 'Baekseung'(Strain 4230) had the highest content of the stabilizing neurotransmitter GABA(15.38 ㎍/ml and 20.56 ㎍/ml, respectively) among non-white and white strains, respectively. Our findings provide useful information for breeding F. velutipes to obtain strains with enhanced functionality.

Efficient Selective Recovery of Lithium from Waste LiFePO4 Cathode Materials using Low Concentration Sulfuric Solution and 2-step Leaching Method (저농도 황산 용액 및 2-스텝 침출 방법을 이용한 폐LiFePO4 양극재로부터 효율적인 리튬의 선택적 회수)

  • Dae-Weon Kim;Hee-Seon Kim
    • Clean Technology
    • /
    • v.29 no.2
    • /
    • pp.87-94
    • /
    • 2023
  • The recovery of valuable metals from waste lithium-based secondary batteries is very important in terms of efficiently utilizing earth's limited number of resources. Currently, the cathode material of a LiFePO4 battery, a type of battery which is widely used in automobiles, contains approximately 5% lithium. After use, the lithium in these batteries can be used again as a raw material for new batteries through lithium recycling. In this study, low-concentration sulfuric acid, a commonly used type of inorganic acid, was used to selectively leach the lithium contained in a waste LiFePO4 cathode material powder. In addition, in order to compare and analyze the leaching efficiency and separation efficiency of each component, the optimalleaching conditions were derived by applying a two-step leaching process with pulp density being used as a variable during leaching. When leaching with pulp density as a variable, it was confirmed that at a pulp density of 200 g/L, the separation efficiency was approximately 200 times higher than at other pulp densities because the iron and phosphorus components were hardly leached at this pulp density. Accordingly, the pulp density of 200 g/L was used tooptimize the leaching conditions for the selective leaching and recovery of lithium.

Properties on the Strength of Polymer Concrete Using Nano MMT-UP Composite (나노 MMT-폴리머 복합체를 이용한 폴리머 콘크리트의 강도 특성)

  • Jo, Byung-Wan;Moon, Rin-Gon;Park, Seung-Kook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4A
    • /
    • pp.761-766
    • /
    • 2006
  • Polymer composite are increasingly considered as structural components for use in civil engineering, on account of their enhanced strength-to-weight ratios. Unsaturated polyester (UP) resin have been widely used for the matrix of composites such as FRP and polymer composite, due to its excellent adhesive. Polymer nanocomposites are new class of composites derived from the nano scale inorganic particles with dimensions typically in the range of 1 to 1000 nm that are dispersed in the polymer matrix homogeneously. Owing to the high aspect ratio of the fillers, mechanical, thermal, flame, retardant and barrier properties are enhanced without significant loss of clarity, toughness or impact strength. To prepare the MMT (Montmorillonite)-UP exfoliated nanocomposites, UP was mixed with MMT at $60^{\circ}C$ for 3 hours by using pan mixer. XRD (X-ray diffraction) pattern of the composites and TEM (Transmission Electron Micrographs) showed that the interlayer spacing of the modified MMT were exfoliated in polymer matrix. The mechanical properties also supported these findings, since in general, tensile strength, modulus with modified MMT were higher than those of the composites with unmodified MMT. The thermal stability of MMT-UP nanocomposite is better than that of pure UP, and its glass transition temperature is higher than that of pure UP. The polymer concrete made with MMT-UP nanocomposite has better mechanical properties than of pure UP. Therefore, it is suggested that strength and elastic modulus of polymer concrete was found to be positively tensile strength and tensile modulus of the MMT-UP nanocomposites.

A Study on the Control of Hygroscopicity and Hardness in Polymer Surfaces (고분자 표면의 흡습성 및 경도 제어 연구)

  • Jinil Kim;Young Nam Jung;Doa Kim;Myung Yung Jeong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.4
    • /
    • pp.86-90
    • /
    • 2023
  • The packaging of electronic devices performs a protective function to ensure that their durability and reliability are not affected by changes in the operating environment caused by external factors. Recent advances in materials have led to ongoing research into bonded packaging of heterogeneous materials such as polymers and inorganic materials in electronic devices. In this packaging process, it is important to have a binding that joins the materials and ensures the operating environment, which includes adhesion to the substrate, corrosion and oxidation resistance through moisture removal, and durability. In this study, the hygroscopicity of the coating layer by modifying the polymer surface based on PVA was evaluated by controlling and measuring the contact angle, and the adhesion was confirmed by applying water-based ink and testing according to ASTM_D3363. For the durability of the polymer surface, the IPL post-treatment process was used to improve the hardness and toughness against applied voltage, and the pencil hardness test and nanoindentation test were conducted. Through this, we analyzed and proposed solutions to ensure the reliability and durability of polymer devices in polymer microfabrication against environmental factors such as moisture, temperature fluctuations and adhesion, and surface abrasion.

Layered structure of sialoliths compared with tonsilloliths and antroliths

  • Buyanbileg Sodnom-Ish;Mi Young Eo;Yun Ju Cho;Mi Hyun Seo;Hyeong-Cheol Yang;Min-Keun Kim;Hoon Myoung;Soung Min Kim
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.50 no.1
    • /
    • pp.13-26
    • /
    • 2024
  • Objectives: The aim of this study was to perform a comparative analysis of the ultrastructural and chemical composition of sialoliths, tonsilloliths, and antroliths and to describe their growth pattern. Materials and Methods: We obtained 19 specimens from 18 patients and classified the specimens into three groups: sialolith (A), tonsillolith (B), and antrolith (C). The peripheral, middle, and core regions of the specimens were examined in detail by histology, micro-computed tomography (micro-CT), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy, and transmission electron microscopy (TEM). Results: In the micro-CT, group A showed alternating radiodense and radiolucent layers, while group B had a homogeneous structure. Group C specimens revealed a compact homogeneous structure. Histopathologically, group A showed a laminated, teardrop-shaped, globular structure. Group B demonstrated degrees of immature calcification of organic and inorganic materials. In group C, the lesion was not encapsulated and showed a homogeneous lamellar bone structure. SEM revealed that group A showed distinct three layers: a peripheral multilayer zone, intermediate compact zone, and the central nidus area; groups B and C did not show these layers. The main elemental components of sialoliths were O, C, Ca, N, Cu, P, Zn, Si, Zr, F, Na, and Mg. In group B, a small amount of Fe was found in the peripheral region. Group C had a shorter component list: Ca, C, O, P, F, N, Si, Na, and Mg. TEM analysis of group A showed globular structures undergoing intra-vesicular calcification. In group B, bacteria were present in the middle layer. In the outer layer of the group C antrolith, an osteoblastic rimming was observed. Conclusion: Sialoliths had distinct three layers: a peripheral multilayer zone, an intermediate compact zone and the central nidus area, while the tonsillolith and antrolith specimens lacked distinct layers and a core.

Evaluation of Basic Oxygen Furnace Slag as Soil Conditioner in the Rice Paddy Field (논토양 벼재배에서 제강슬래그의 토양개량제로서의 시용 효과)

  • Lim, June-Taeg;Lee, Yeen;Park, In-Jin;Lee, Choong-Il;Hyun, Kyu-Hawn;Kwon, Byung-Sun;Kim, Hak-Jin
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.32 no.3
    • /
    • pp.295-303
    • /
    • 1999
  • An experiment was conducted to evaluate the possibility of using basic oxygen furnace (BOF) slag as a soil conditioner in rice paddy field. In 1997, rice (Oryza sativa B. cv. Dongjinbyeo) crop was cultivated under different application rates of BOF slag at three different places, Inandong Sunchon city, Youjunglee Bosung province, and Nampyung Najoo city. In each paddy field, five treatments, four application rate of BOF slag (0, 4, 8, $12Mg\;ha^{-1}$) and one application rate of lime ($2Mg\;ha^{-1}$) were tried with three replications. Plant height, number of tillers per hill, leaf area per hill, leaf dry weight, calm dry weight or shoot dry weight per hill were measured five times at the interval of seven days. Chemical contents of rice plants and soil were also measured at the same sampling date Yield were estimated by harvesting $6.6m^2$ per experimental unit and yield components were measured by sampling 10 plants per experimental unit at the harvest date. Application of BOF slag hardly affected contents of soil organic matter, available phosphate and potassium in soil. Soil pH and contents of Ca, Mg, Fe and $SiO_2$ enhanced as BOF slag rate increased. Enhancement of soil pH by ROF slag treatment appeared to be closely related with increase in soil Ca content. Application tate of $2Mg\;ha^{-1}$ of lime showed almost the same effect, in increase of soil Ca content as application rate of $4{\sim}8Mg\;ha^{-1}$ of BOF slag, Fe content in soil decreased sharply as time passed after slag treatment and stabilized more or less at the later sampling date. Contents of inorganic matter in plant such as total nitrogen, phosphate, potassium and Mg were not affected by BOF slag treatment. However, contents of Ca, Fe, and $SiO_2$ in plants increased as slag rate became higher. The growth of rice plants with BOF slag treatment was more or less slower but continued persistently up to the later growth stage, so that growth of plants with BOF slag treatment was almost the same nr even greater than that of control or lime treatment. However, BOF slag rate of $12Mg\;ha^{-1}$ seemed to be too high because all the measurements of plant, growth at this rate showed lower values than those of other treatments at all the sampling dates. Treatments of BOF slag $4Mg\;ha^{-1}$ or $8Mg\;ha^{-1}$ showed higher rough rice yield than other treatments, so that the optimum BOF slag ratein rice paddy field seemed to be in the rage of $4{\sim}8Mg\;ha^{-1}$.

  • PDF