DOI QR코드

DOI QR Code

저농도 황산 용액 및 2-스텝 침출 방법을 이용한 폐LiFePO4 양극재로부터 효율적인 리튬의 선택적 회수

Efficient Selective Recovery of Lithium from Waste LiFePO4 Cathode Materials using Low Concentration Sulfuric Solution and 2-step Leaching Method

  • 김대원 (고등기술연구원 신소재공정센터) ;
  • 김희선 (고등기술연구원 신소재공정센터)
  • Dae-Weon Kim (Advanced Materials and Processing Center, Institute for Advanced Engineering (IAE)) ;
  • Hee-Seon Kim (Advanced Materials and Processing Center, Institute for Advanced Engineering (IAE))
  • 투고 : 2023.03.13
  • 심사 : 2023.05.11
  • 발행 : 2023.06.30

초록

폐리튬계 이차전지로부터 유가금속을 회수하는 것은 한정된 지구자원의 활용 측면에서 매우 중요하다. 최근 자동차의 전지로 많이 사용하고 있는 LiFePO4 전지 양극재 성분에는 리튬이 약 5.2% 함유되어 있으며, 사용 후 전지에서 리튬 재활용을 통하여 다시 전지의 원료로써 사용할 수 있다. 본 연구에서는 폐LiFePO4 양극재 분말에 함유된 리튬을 선택적으로 침출하기 위하여 일반적으로 많이 사용하고 있는 무기산의 일종인 저농도 황산을 이용하였다. 그리고 각 성분의 침출율 및 분리효율을 비교·분석을 위하여 침출 시 광액농도를 변수로 2 스텝 침출 공정을 적용하여 최적의 침출조건을 도출하고자 하였다. 광액농도를 변수로 침출 시 철 및 인 성분이 거의 침출되지 않는 200 g/L의 광액농도 조건에서는 타 조건과 분리 효율이 약 200배 이상 높은 것으로 확인되었다. 이에 리튬의 선택적 침출 및 회수에 있어서 침출조건을 최적화하였다.

The recovery of valuable metals from waste lithium-based secondary batteries is very important in terms of efficiently utilizing earth's limited number of resources. Currently, the cathode material of a LiFePO4 battery, a type of battery which is widely used in automobiles, contains approximately 5% lithium. After use, the lithium in these batteries can be used again as a raw material for new batteries through lithium recycling. In this study, low-concentration sulfuric acid, a commonly used type of inorganic acid, was used to selectively leach the lithium contained in a waste LiFePO4 cathode material powder. In addition, in order to compare and analyze the leaching efficiency and separation efficiency of each component, the optimalleaching conditions were derived by applying a two-step leaching process with pulp density being used as a variable during leaching. When leaching with pulp density as a variable, it was confirmed that at a pulp density of 200 g/L, the separation efficiency was approximately 200 times higher than at other pulp densities because the iron and phosphorus components were hardly leached at this pulp density. Accordingly, the pulp density of 200 g/L was used tooptimize the leaching conditions for the selective leaching and recovery of lithium.

키워드

과제정보

본 연구는 2022년도 산업통상자원부의 재원으로 한국에너지기술평가원의 지원을 받아 수행한 연구 과제입니다(재생자원의 저탄소 산업 원료화 기술개발 사업 No. 20229A10100100).

참고문헌

  1. Ramana, C. V., Mauger, A., Gendron, F., Julien, C. M., and Zaghib, K., "Study of the Li-insertion/extraction process in LiFePO4/FePO4," J. Power Sour., 187, 555-564 (2009).  https://doi.org/10.1016/j.jpowsour.2008.11.042
  2. Kim, D. K., Park, H. M., Jeong, Y. U., Lee, J. H., and Kim, J. J., "The Effect of Synthesis on the Electrochemical Properties of LiFePO4 for Cathode Material of Secondary Lithium Ion Batteries," J. Korean Ceramic Soc., 43(2), 121-125 (2006).  https://doi.org/10.4191/KCERS.2006.43.2.121
  3. Kong, M., Kim, H. S., and Gu, H. B., "Electrochemical Properties of LiFePO4 Cathode Materials for Lithium Polymer Batteries," J. KIEEME, 19(6), 519-523 (2006).  https://doi.org/10.4313/JKEM.2006.19.6.519
  4. Hwang, Y. G., Kil, S. C., and Kim, J. H., "Technology Trends of Cathode Active Materials for Lithium Ion Battery," Resour. Recycl., 21(5), 79-87 (2012).  https://doi.org/10.7844/kirr.2012.21.5.79
  5. Park, J. S., "The waste battery Industry," Report of Eugene Investment & Securities, (2022). 
  6. Natarajan, S. and Aravindan, V., "Recycling strategies for spent Li-ion battery mixed cathodes," ACS Energy Lett., 3(9), 2101-2103 (2018).  https://doi.org/10.1021/acsenergylett.8b01233
  7. Chen, W. S. and Ho, H. J.,"Recovery of Valuable Metals from Lithium-Ion Batteries NMC Cathode Waste Materials by Hydrometallurgical Methods," Metals, 8(5), 321-227 (2018). 
  8. Joo, S., Kim, D. G., Byun, S. Y., Kim, Y. H., and Shim, H. W., "A Study on the Synthesis Behavior of Lithium Hydroxide by Type of Precipitant for Lithium Sulfate Recovered from Waste LIB," Resour. Recycl., 30(1), 44-52 (2021).  https://doi.org/10.7844/kirr.2021.30.1.44
  9. Kim, D. W., Park, J. R., Ahn, N. K., Choi G. M., Jin Y. H., and Yang J. K., "A review on the recovery of the lithium carbonate powders from lithium containing substances," J. Korean Cryst. Growth Cryst. Technol., 29(3), 91-106 (2019). 
  10. Jin, Y. H., Kim, B. R., and Kim, D. W., "Correlation between Lithium Concentration and Ecotoxicoloigy in Lithium Contained Waste Water," Clean Technol., 27(1), 33-38 (2021). 
  11. Kim, B. R., Kim, D. W., Kim, T. H., Lee J. W., Jung, H. C., Han, D. H., Jung, S. H., and Yang, D. H., "A study on the Synthesis of Cathode Active Material Precursor from Waste Lithium Secondary Battery," J. Korean Cryst. Growth Cryst. Technol., 32(2), 61-67 (2022). 
  12. Jung, Y. J., Park, S. C., Kim, Y. H., Yoo, B. Y., Lee, M. S., and Son, S. H., "A Study on Optimization of Nitric Acid Leaching and Roasting Process for Selective Lithium Leaching of Spent Batteries Cell Powder," Resour. Recycl., 30(6), 45-52 (2021).  https://doi.org/10.7844/kirr.2021.30.6.43
  13. Park, E., Han, C., Son, S. H., Lee, M. S., and Kim, Y. H., "Overview on Pyrometallurgical Recycling Process of Spent Lithium-ion Battery," Resour. Recycl., 31(3), 27-39 (2022).  https://doi.org/10.7844/kirr.2022.31.3.27
  14. Yu, X., Yu, S., Yang, Z., Gao H., Xu P., Cai, G., Rose, S., Brooks, C., Liu, P., and Chen, Z., "Achieving Low-temperature Hydrothermal Relithiation by Redox Mediation for Direct Recycling of Spent Lithium-ion Battery Cathodes," Energy Stor. Mater., 51, 54-62 (2022). 
  15. Moon, H. S., Song, S. J., Tran, T. T., and Lee, M. S., "Separation of Co(II), Ni(II), and Cu(II) from Sulfuric Acid Solution by Solvent Extraction," Resour. Recycl., 31(1), 21-28 (2022).  https://doi.org/10.7844/kirr.2022.31.1.21
  16. Yang, Y., Lei, S., Song, S., Sun, W., and Wang, L., "Stepwise Recycling of Valuable Metals from Ni-rich Cathode Material of Spent Lithium-ion Batteries," Waste Manage., 102, 131-138 (2020).  https://doi.org/10.1016/j.wasman.2019.09.044
  17. Kim, J., Kim, Y., Oh, S. K., and Jeon, J. K., "Analysis of Dry Process Products for Recycling of Spent Secondary Batteries," Clean Technol., 27(2), 139-145 (2021). 
  18. Wu, J., Zheng, M., Liu, T., Wang, Y., Liu, Y., Nai, J., Zhang, L., Zhang, S., and Tao, X., "Direct Recovery: A Sustainable Recycling Technology for Spent Lithium-ion Battery," Energy Stor. Mater., 54, 120-134 (2023). 
  19. Wu, X., Ma J., Wang, J., Zhang, X., Zhou, G., and Liang, Z., "Progress, Key Issues, and Future Prospects for Li-Ion Battery Recycling," Global Chall., 2200067-2200088 (2022) 
  20. Mo, J. Y., "The Benefit-Cost Analysis for Korea Lithium-ion Battery Waste Recycling Project and Promotion Plans," J. Korea Academia-Industrial Cooperation Soc., 19(9), 326-332 (2018). 
  21. Zhou, M., Li, B., Li, J., and Xu, Z., "Pyrometallurgical Technology in the Recycling of a Spent Lithium Ion Battery: Evolution and the Challenge,"ACS EST Engg., 1(10), 1369-1382 (2021).  https://doi.org/10.1021/acsestengg.1c00067
  22. Chen, J., Li, Q., Song, J., Song, D., Zhang, L., and Shi, X., "Environmentally Friendly Recycling and Effective Repairing of Cathode Powders from Spent LiFePO4 Batteries," Green Chem., 18(8), 2500-2506 (2016).  https://doi.org/10.1039/C5GC02650D
  23. Song, X., Hu, T., Liang, C., Long, H. L., Zhou, L., Song, W., Wu, Z. S., and Liu, J. W., "Direct Regeneration of Cathode Materials from Spent Lithium Iron Phosphate Batteries using a Solid Phase Sintering Method," RSC Adv., 7(8), 4783-4790 (2017).  https://doi.org/10.1039/C6RA27210J
  24. Li, X., Zhang, J., Song, D., Song, D., Song, J., and Zhang, L., "Direct Regeneration of Recycled Cathode Material Mixture from Scrapped LiFePO4 Batteries," J. Power Sour., 345, 78-84 (2017).  https://doi.org/10.1016/j.jpowsour.2017.01.118
  25. Song, W., Liu, J., You, L., Wang, S., Zhou, Q., Gao, Y., Yin, R., Xu, W., and Guo, Z., "Re-synthesis of Nano-structured LiFePO4/graphene Composite Derived from Spent Lithium-ion Battery for Booming Electric Vehicle Application," J. Power Sour., 419, 192-202 (2019).  https://doi.org/10.1016/j.jpowsour.2019.02.065
  26. Wang, W. and Wu, Y., "An overview of recycling and treatment of spent LiFePO4 batteries in China," Resour., Conserv. Recycl., 127, 233-243 (2017).  https://doi.org/10.1016/j.resconrec.2017.08.019
  27. Yang, Y., Meng, X., Cao, H., Liu, C., Zhang, Y., and Sun, Z., "Selective recovery of lithium from spent lithium iron phosphate batteries: a sustainable process," Green Chem., 20(13), 3121-3133 (2018).  https://doi.org/10.1039/C7GC03376A
  28. Mahandra, H., and Ghahreman, A., "A sustainable process for selective recovery of lithium as lithium phosphate from spent LiFePO4 batteries," Resour. Conserv. Recycl., 175, 105883-105894 (2021).  https://doi.org/10.1016/j.resconrec.2021.105883
  29. Kumar, J., Shen, X., Li, B., Liu, H., and Zhao, J., "Selective recovery of Li and FePO4 from spent LiFePO4 cathode scraps by organic acids and the properties of the regenerated LiFePO4," Waste Manag., 113, 32-40 (2020).  https://doi.org/10.1016/j.wasman.2020.05.046
  30. Li, L., Bian, Y., Zhang, X., Yao, Y., Fan, E., Wu, F., and Chen, R., "A green and effective room-temperature recycling process of LiFePO4 cathode materials for lithium-ion batteries," Waste Manag., 85, 437-444 (2019).  https://doi.org/10.1016/j.wasman.2019.01.012
  31. Fan, E., Li, L., Zhang, X., Bian, Y., Xue, Q., Wu, J., Wu, F., and Chen, R., "Selective recovery of Li and Fe from spent lithium-ion batteries by an environmentally friendly mechanochemical approach," ACS Sustain. Chem. Eng., 6(8), 11029-11035 (2018).  https://doi.org/10.1021/acssuschemeng.8b02503
  32. Zhang, J., Hu, J., Liu, Y., Jing, Q., Yang, C., Chen, Y., and Wang, C., "Sustainable and Facile Method for the Selective Recovery of Lithium from Cathode Scrap of Spent LiFePO4 Batteries," ACS Sustain. Chem. Eng., 7(6), 5626-5631 (2019).  https://doi.org/10.1021/acssuschemeng.9b00404
  33. Liu, K., Liu, L., Tan, Q., and Li, J., "Selective extraction of lithium from a spent lithium iron phosphate battery by mechanochemical solid-phase oxidation," Green Chem., 23(3), 1344-1352 (2021).  https://doi.org/10.1039/D0GC03683H
  34. Yue, X., Zhang, C., Zhang, W., Wang, Y., and Zhang, F., "Recycling phosphorus from spent LiFePO4 battery for multifunctional slow-release fertilizer preparation and simultaneous recovery of Lithium," Chem. Eng. J., 426, 131311-131323 (2021).  https://doi.org/10.1016/j.cej.2021.131311
  35. Peng, D., Zhang, J., Zou, J., Ji G., Ye L., and Zhang, B., "Closed-loop regeneration of LiFePO4 from spent lithium-ion batteries: A "feed three birds with one scone" strategy toward advanced cathode materials," J. Clean. Prod., 316, 128098-128109 (2021).  https://doi.org/10.1016/j.jclepro.2021.128098
  36. Gangaja, B., Nair, S., and Santhanagopalan, D., "Reuse, recycle, and regeneration of LiFePO4 cathode from spent lithium-ion batteries for rechargeable lithium-and sodium-ion batteries," ACS Sustain. Chem. Eng., 9(13), 4711-4721 (2021).  https://doi.org/10.1021/acssuschemeng.0c08487
  37. Kim, H. S., Kim, D. W., Jang, D. H., Kim, B. R., Jin, Y. H., Chae, B. M., and Lee, S. W., "A Study on the Leaching Effect and Selective Recovery of Lithium Element by Persulfate-based Oxidizing Agents from Waste LiFePO4 Cathode," Resour. Recycl., 31(4), 40-48 (2022).  https://doi.org/10.7844/kirr.2022.31.4.40
  38. Li, H., Xing, S., Liu, Y., Guo, H., and Kuang, G., "Recovery of Lithium, Iron, and Phosphorus from Spent LiFePO4 Batteries Using Stoichiometric Sulfuric Acid Leaching System," ACS Sustain. Chem. Eng., 5, 8017-8024 (2017).  https://doi.org/10.1021/acssuschemeng.7b01594
  39. Zheng, R., Zhao, L., Wang, W., Liu, Y., Ma, Q., Mu, D., Li, R., and Dai, C., "Optimized Li and Fe recovery from spent lithium-ion batteries via a solution-precipitation method," RSC Adv., 6, 43613-43625 (2016).  https://doi.org/10.1039/C6RA05477C
  40. Cai, G., Fung, K., Ng, K., and Wibowo, C., "Process Development for the Recycle of Spent Lithium Ion Batteries by Chemical Precipitation," Ind. Eng. Chem. Res., 53(47), 18245-18259 (2014).  https://doi.org/10.1021/ie5025326
  41. Yang, Y., Zheng, X., Cao, H., Zhao, C., Lin, X., Ning, P., Zhang, Y., Jin, W., and Sun, Z., "A Closed-Loop Process for Selective Metal Recovery from Spent Lithium Iron Phosphate Batteries through Mechanochemical Activation," ACS Sustain. Chem., 5, 9972-9980 (2017).  https://doi.org/10.1021/acssuschemeng.7b01914
  42. Bian, D., Sun, Y., Li, S., Tian, Y., Yang, Z., and Fan, X., "A novel process to recycle spent LiFePO4 for synthesizing LiFePO4/C hierarchical microflowers," Electrochim. Acta, 190, 134-140 (2016).  https://doi.org/10.1016/j.electacta.2015.12.114
  43. Shin, E., Kim, S., Noh, J., Byun, D., Chung, K., Kim, H., and Cho, B., "A green recycling process designed for LiFePO4 cathode materials for Li-ion batteries," J. Mater. Chem. A, 3(21), 11493-11502 (2015). https://doi.org/10.1039/C5TA02540K