Browse > Article
http://dx.doi.org/10.11614/KSL.2016.49.4.245

The Loads and Biogeochemical Properties of Riverine Carbon  

Oh, Neung-Hwan (Department of Environmental Planning, Graduate School of Environmental Studies, Seoul National University)
Publication Information
Abstract
Although rivers cover only 0.5% of the total land area on the Earth, they are windows that show the integrated effects of watershed biogeochemistry. Studies on the loads and properties of riverine carbon have been conducted because they are directly linked with drinking water quality, and because regional or global net ecosystem production (NEP) can be overestimated, unless riverine carbon loads are subtracted. Globally, ${\sim}0.8-1.5Pg\;yr^{-1}$ and ${\sim}0.62-2.1Pg\;yr^{-1}$ of carbon are transported from terrestrial ecosystems to the ocean via rivers and from inland waters to the atmosphere, respectively. Concentrations, ${\delta}^{13}C$, and fluorescence spectra of riverine carbon have been investigated in South Korea to understand the spatiotemporal changes in the sources. Precipitation as well as land use/land cover can strongly influence the composition of riverine carbon, thus shifting the ratios among DIC, DOC, and POC, which could affect the concentrations, loads, and the degradability of adsorbed organic and inorganic toxic materials. A variety of analyses including $^{14}C$ and high resolution mass spectroscopy need to be employed to precisely define the sources and to quantify the degradability of riverine carbon. Long-term data on concentrations of major ions including alkalinity and daily discharge have been used to show direct evidence of ecosystem changes in the US. The current database managed by the Korean government could be improved further by integrating the data collected by individual researchers, and by adding the major components ions including DIC, DOC, and POC into the database.
Keywords
river; DIC; DOC; POC; carbon cycle;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Yoo, S., D.A. Kwak, G. Cui, W.K. Lee, H. Kwak, A. Ito, Y. Son and S. Jeon. 2013. Estimation of the ecosystem carbon budget in South Korea between 1999 and 2008. Ecological Research 28: 1045-1059.   DOI
2 Yoon, T.K., H. Jin, N.H. Oh and J.H. Park. 2016. Technical note: Assessing gas equilibration systems for continuous p$CO_2$ measurements in inland waters. Biogeosciences 13: 3915-3930.   DOI
3 Yu, J.-Y., I.-K. Choi and H.-S. Kim. 1994. Geochemical characteristics of the surface water depending on the bed rock types in the Chuncheon area. Journal of Geological Society of Korea 30: 307-324.
4 Raymond, P.A. and J.E. Bauer. 2001. Use of $^{14}C$ and $^{13}C$ natural abundances for evaluating riverine, estuarine, and coastal DOC and POC sources and cycling: a review and synthesis. Organic Geochemistry 32: 469-485.   DOI
5 Raymond, P.A., J. Hartmann, R. Lauerwald, S. Sobek, C. Mc-Donald, M. Hoover, D. Butman, R. Striegl, E. Mayorga, C. Humborg, P. Kortelainen, H. Duerr, M. Meybeck, P. Ciais and P. Guth. 2013. Global carbon dioxide emissions from inland waters. Nature 503: 355-359.   DOI
6 Raymond, P.A., N.H. Oh, R.E. Turner, W. Broussard. 2008. Anthropogenically enhanced fluxes of water and carbon from the Mississippi River. Nature 451: 449-452.   DOI
7 Regnier, P., P. Friedlingstein, P. Ciais, F.T. Mackenzie, N. Gruber, I.A. Janssens, G.G. Laruelle, R. Lauerwald, S. Luyssaert, A.J. Andersson, S. Arndt, C. Arnosti, A.V. Borges, A.W. Dale, A. Gallego-Sala, Y. Godderis, N. Goossens, J. Hartmann, C. Heinze, T. Ilyina, F. Joos, D.E. LaRowe, J. Leifeld, F.J.R. Meysman, G. Munhoven, P.A. Raymond, R. Spahni, P. Suntharalingam and M. Thullner. 2013. Anthropogenic perturbation of the carbon fluxes from land to ocean. Nature Geoscience 6: 597-607.   DOI
8 Richey, J.E., J.M. Melack, A.K. Aufdenkampe, V.M. Ballester and L.L. Hess. 2002. Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric $CO_2$. Nature 416: 617-620.   DOI
9 Richey, J.E. 2004. Pathways of atmospheric $CO_2$ through fluvial systems, pp. 329-340. In: The Global Carbon Cycle: Integrating Humans, Climate, and the Natural World (Field, C.B. and M.R. Raupach, eds.). Island Press, Washington, DC.
10 Richey, J.E., J.T. Brock, R.J. Naiman, R.C. Wissmar and R.F. Stallard. 1980. Organic carbon: Oxidation and transport in the Amazon River. Science 207: 1348-1351.   DOI
11 Richter, D.D., D. Markewitz, S.E. Trumbore and C.G. Wells. 1999. Rapid accumulation and turnover of soil carbon in a re-establishing forest. Nature 400: 56-58.   DOI
12 Roth, J. 1879. Allgemeine und chemische Geologie Band 1: Bildung und Umbildung der Mineralien - Quell-, Fluss-, und Meerwasser. Verlag von Wilhelm Hertz. Berlin.
13 Ryu, J.S., H.W. Chang and K.S. Lee. 2008. Hydrogeochemistry and isotope geochemistry of the Han River system, A summary. Journal of the Geological Society of Korea 44: 467-477.
14 Schlesinger, W.H. 1990. Evidence from chronosequence studies for a low carbon storage potential of soils. Nature 348: 232-234.   DOI
15 Schlesinger, W.H. and E.S. Bernhardt. 2013. Biogeochemistry: An Analysis of Global Change. Academic Press, San Diego, California.
16 Aufdenkampe, A.K., E. Mayorga, P.A. Raymond, J.M. Melack, S.C. Doney, S.R. Alin, R.E. Aalto and K. Yoo. 2011. Riverine coupling of biogeochemical cycles between land, oceans, and atmosphere. Frontiers in Ecology and the Environment 9: 53-60.   DOI
17 Cory, R.M., C.P. Ward, B.C. Crump and G.W. Kling. 2014. Sunlight controls water column processing of carbon in arctic fresh waters. Science 345: 925-928.   DOI
18 Dole, R.B. 1909. The Quality of Surface Waters in the United States. Part I. - Analyses of Waters East of the One Hundred Meridian. USGS Water-Supply Paper 236. Government Printing Office, Washington, D.C.
19 Amiotte Suchet, P., J.L. Probst and W. Ludwig. 2003. Worldwide distribution of continental rock lithology: Implications for the atmospheric/soil $CO_2$ uptake by continental weathering and alkalinity river transport to the oceans. Global Biogeochemical Cycles 17.
20 Battin, T.J., S. Luyssaert, L.A. Kaplan, A.K. Aufdenkampe, A. Richter and L.J. Tranvik. 2009. The boundless carbon cycle. Nature Geoscience 2: 598-600.   DOI
21 Berner, R.A. 1982. Burial of organic carbon and pyrite sulfur in the modern ocean: Its geochemical and environmental significance. American Journal of Science 282: 451-473.   DOI
22 Likens, G.E. 2010. The role of science in decision making: does evidence-based science drive environmental policy? Frontiers in Ecology and the Environment 8: E1-E9.   DOI
23 Schlesinger, W.H. and J.M. Melack. 1981. Transport of organic carbon in the world's rivers. Tellus 33: 172-187.
24 Berner, R.A., A.C. Lasaga and R.M. Garrels. 1983. The carbonate-silicate geochemical cycle and its effect on atmospheric carbon-dioxide over the past 100 million years. American Journal of Science 283: 641-683.   DOI
25 Shin, W.J., G.S. Chung, D. Lee and K.S. Lee. 2011a. Dissolved inorganic carbon export from carbonate and silicate catchments estimated from carbonate chemistry and ${\delta}^{13}C_{DIC}$. Hydrology and Earth System Sciences 15: 2551-2560.   DOI
26 Lauerwald, R., G.G. Laruelle, J. Hartmann, P. Ciais and P.A.G. Regnier. 2015. Spatial patterns in $CO_2$ evasion from the global river network. Global Biogeochemical Cycles 29: 534-554.   DOI
27 Lee, E.J., G.Y. Yoo, Y. Jeong, K.U. Kim, J.H. Park and N.H. Oh. 2015. Comparison of UV-VIS and FDOM sensors for in situ monitoring of stream DOC concentrations. Biogeosciences 12: 3109-3118.   DOI
28 Lee, K.S., J.S. Ryu, K.H. Ahn, H.W. Chang and D. Lee. 2007. Factors controlling carbon isotope ratios of dissolved inorganic carbon in two major tributaries of the Han River, Korea. Hydrological Processes 21: 500-509.   DOI
29 Lee, Y.-J., B.-K. Jeong, Y.-S. Shin, S.-H. Kim, and K.-H. Shin. 2013. Determination of the origin of particulate organic matter at the estuary of Youngsan River using stable isotope ratios (${\delta}^{13}C$, ${\delta}^{15}N$). Korean Journal of Ecology and Environment 46: 175-184.
30 Likens, G.E., C.T. Driscoll and D.C. Buso. 1996. Long-term effects of acid rain: Response and recovery of a forest ecosystem. Science 272: 244-246.   DOI
31 Ludwig, W., J.L. Probst and S. Kempe. 1996. Predicting the oceanic input of organic carbon by continental erosion. Global Biogeochemical Cycles 10: 23-41.   DOI
32 Griffith, D.R., R.T. Barnes and P.A. Raymond. 2009. Inputs of fossil carbon from wastewater treatment plants to US rivers and oceans. Environmental Science & Technology 43: 5647-5651.   DOI
33 Gal, J.-K., M.-S. Kim, Y.-J. Lee, J. Seo and K.-H. Shin. 2012. Foodweb of aquatic ecosystem within the Tamjin River through the determination of carbon and nitrogen stable isotope ratios. Korean Journal of Limnology 45: 242-251.
34 Galy, V., C. France-Lanord, O. Beyssac, P. Faure, H. Kudrass and F. Palhol. 2007. Efficient organic carbon burial in the Bengal fan sustained by the Himalayan erosional system. Nature 450: 407-410.   DOI
35 Galy, V., B. Peucker-Ehrenbrink and T. Eglinton. 2015. Global carbon export from the terrestrial biosphere controlled by erosion. Nature 521: 204-207.   DOI
36 Hartmann, J., N. Jansen, H.H. Duerr, S. Kempe and P. Koehler. 2009. Global $CO_2$-consumption by chemical weathering: What is the contribution of highly active weathering regions? Global and Planetary Change 69: 185-194.   DOI
37 Holland, H.D. 1978. The chemistry of the atmosphere and oceans. Wiley, New York.
38 Houghton, R.A. 2014. The contemporary carbon cycle, In: Treatise on Geochemistry 2nd ed. (Holland, H.D. and K.K. Turekian, eds.). Elsevier, San Diego.
39 Hong, S.U. 1969. Limnological comparison of the South and North-Han River. Korean Journal of Limnology 2: 51-67.
40 Hotchkiss, E.R., R.O. Hall, R.A. Sponseller, D. Butman, J. Klaminder, H. Laudon, M. Rosvall and J. Karlsson. 2015. Sources of and processes controlling $CO_2$ emissions change with the size of streams and rivers. Nature Geoscience 8: 696-699.   DOI
41 Huang, T.H., Y.H. Fu, P.Y. Pan and C.T.A. Chen. 2012. Fluvial carbon fluxes in tropical rivers. Current Opinion in Environmental Sustainability 4: 162-169.   DOI
42 Oh, N.H. 2014. The effects of elevated atmospheric $CO_2$ on chemical weathering of forest soils. Korean Journal of Agricultural and Forest Meteorology 16: 169-180.   DOI
43 Mayorga, E., A.K. Aufdenkampe, C.A. Masiello, A.V. Krusche, J.I. Hedges, P.D. Quay, J.E. Richey and T.A. Brown. 2005. Young organic matter as a source of carbon dioxide outgassing from Amazonian rivers. Nature 436: 538-541.   DOI
44 Meybeck, M. 1987. Global chemical-weathering of surficial rocks estimated from river dissolved loads. American Journal of Science 287: 401-428.   DOI
45 Meybeck, M. 2004. Global occurrence of major elements in rivers, In: Treatise on Geochemistry (Holland, H.D. and K.K. Turekian, eds.). Elsevier, San Diego.
46 Oh, N.H., M. Hofmockel, M.L. Lavine and D.D. Richter. 2007. Did elevated atmospheric $CO_2$ alter soil mineral weathering? an analysis of 5-year soil water chemistry data at Duke FACE study. Global Change Biology 13: 2626-2641.   DOI
47 Oh, N.H., B.A. Pellerin, P.A.M. Bachand, P.J. Hernes, S.M. Bachand, N. Ohara, M.L. Kavvas, B.A. Bergamaschi and W.R. Horwath. 2013. The role of irrigation runoff and winter rainfall on dissolved organic carbon loads in an agricultural watershed. Agriculture Ecosystems & Environment 179: 1-10.   DOI
48 Oh, N.H. and D.D. Richter. 2004. Soil acidification induced by elevated atmospheric $CO_2$. Global Change Biology 10: 1936-1946.   DOI
49 Kim, K.-H. and E.-S. Shim. 2001. Geochemical characteristics and origin of dissolved ions in the Han River water. Economic and Environmental Geology 34: 539-553.
50 Kim, J.-K., S. Jung, J.-S. Eom, C. Jang, Y. Lee, J.S. Owen, M.-S. Jung and B. Kim. 2013. Dissolved and particulate organic carbon concentrations in stream water and relationships with land use in multiple-use watersheds of the Han River (Korea). Water International 38: 326-339.   DOI
51 Kim, M.-S., J.-M. Kim, J.-Y. Hwang, B.-K. Kim, H.-S. Cho, S.J. Youn, S.-y. Hong, O.-S. Kwon and W.-S. Lee. 2014. De termination of the origin of particulate organic matter at the Lake Paldang using stable isotope ratios (${\delta}^{13}C$, ${\delta}^{15}N$). Korean Journal of Ecology and Environment 47: 127-134.   DOI
52 Durr, H.H., M. Meybeck, J. Hartmann, G.G. Laruelle and V. Roubeix. 2011. Global spatial distribution of natural riverine silica inputs to the coastal zone. Biogeosciences 8: 597-620.   DOI
53 Kim, S.J., J. Kim and K. Kim. 2010. Organic carbon efflux from a deciduous forest catchment in Korea. Biogeosciences 7: 1323-1334.   DOI
54 Kokic, J., M.B. Wallin, H.E. Chmiel, B.A. Denfeld and S. Sobek. 2015. Carbon dioxide evasion from headwater systems strongly contributes to the total export of carbon from a small boreal lake catchment. Journal of Geophysical Research-Biogeosciences 120: 13-28.   DOI
55 Durr, H.H., M. Meybeck and S.H. Durr. 2005. Lithologic composition of the Earth's continental surfaces derived from a new digital map emphasizing riverine material transfer. Global Biogeochemical Cycles 19.
56 Gaillardet, J., B. Dupre, P. Louvat and C.J. Allegre. 1999. Global silicate weathering and $CO_2$ consumption rates deduced from the chemistry of large rivers. Chemical Geology 159: 3-30.   DOI
57 Jung, B.J., H.J. Lee, J.J. Jeong, J. Owen, B. Kim, K. Meusburger, C. Alewell, G. Gebauer, C. Shope and J.H. Park. 2012. Storm pulses and varying sources of hydrologic carbon export from a mountainous watershed. Journal of Hydrology 440: 90-101.
58 Hur, J., N. Hang Vo-Minh and B.-M. Lee. 2014. Influence of upstream land use on dissolved organic matter and trihalomethane formation potential in watersheds for two different seasons. Environmental Science and Pollution Research 21: 7489-7500.   DOI
59 Jeong, J.J., S. Bartsch, J.H. Fleckenstein, E. Matzner, J.D. Tenhunen, S.D. Lee, S.K. Park and J.H. Park. 2012. Differential storm responses of dissolved and particulate organic carbon in a mountainous headwater stream, investigated by high-frequency, in situ optical measurements. Journal of Geophysical Research-Biogeosciences 117.
60 Jobbagy, E.G. and R.B. Jackson. 2000. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecological Applications 10: 423-436.   DOI
61 Jung, B.J., J.K. Lee, H. Kim and J.H. Park. 2014. Export, biodegradation, and disinfection byproduct formation of dissolved and particulate organic carbon in a forested headwater stream during extreme rainfall events. Biogeosciences 11: 6119-6129.
62 Butman, D. and P. Raymond. 2011. Significant efflux of carbon dioxide from streams and rivers in the United States. Nature Geoscience 4: 839-842.   DOI
63 Butman, D., S. Stackpoole, E. Stets, C.P. McDonald, D.W. Clow and R.G. Striegl. 2016. Aquatic carbon cycling in the conterminous United States and implications for terrestrial carbon accounting. Proceedings of the National Academy of Sciences of the United States of America 113: 58-63.   DOI
64 Cole, J.J., Y.T. Prairie, N.F. Caraco, W.H. McDowell, L.J. Tranvik, R.G. Striegl, C.M. Duarte, P. Kortelainen, J.A. Downing, J.J. Middelburg and J. Melack. 2007. Plumbing the global carbon cycle: Integrating inland waters into the terrestrial carbon budget. Ecosystems 10: 172-185.   DOI
65 Canadell, J.G., C. Le Quere, M.R. Raupach, C.B. Field, E.T. Buitenhuis, P. Ciais, T.J. Conway, N.P. Gillett, R.A. Houghton, and G. Marland. 2007. Contributions to accelerating atmospheric $CO_2$ growth from economic activity, carbon intensity, and efficiency of natural sinks. Proceedings of the National Academy of Sciences of the United States of America 104: 18866-18870.   DOI
66 Aitkenhead, J.A. and W.H. McDowell. 2000. Soil C : N ratio as a predictor of annual riverine DOC flux at local and global scales. Global Biogeochemical Cycles 14: 127-138.   DOI
67 Amiotte Suchet, P. and J.L. Probst. 1995. A global model for present-day atmospheric/soil $CO_2$ consumption by chemical erosion of continental rocks (GEM-$CO_2$). Tellus Series B-Chemical and Physical Meteorology 47: 273-280.   DOI
68 Clark, I.D. and P. Fritz. 1997. Environmental isotopes in hydrogeology. CRC Press/Lewis Publishers, Boca Raton, FL.
69 Clarke, F.W. 1924. The Composition of the River and Lake Waters of the United States. United States Geological Survey Professional Paper 135. Government Printing Office, Washington, DC.
70 Zhao, M.S. and S.W. Running. 2010. Drought-Induced Reduction in Global Terrestrial Net Primary Production from 2000 Through 2009. Science 329: 940-943.   DOI
71 Shin, W.J., K.S. Lee, Y. Park, D. Lee and E.J. Yu. 2015. Tracing anthropogenic DIC in urban streams based on isotopic and geochemical tracers. Environmental Earth Sciences 74: 2707-2717.   DOI
72 Tarnocai, C., J.G. Canadell, E.A.G. Schuur, P. Kuhry, G. Mazhitova and S. Zimov. 2009. Soil organic carbon pools in the northern circumpolar permafrost region. Global Biogeochemical Cycles 23.
73 Shin, W.J., J.S. Ryu, Y. Park and K.S. Lee. 2011b. Chemical weathering and associated $CO_2$ consumption in six major river basins, South Korea. Geomorphology 129: 334-341.   DOI
74 Shin, Y., E.J. Lee, Y.J. Jeon, J. Hur and N.H. Oh. 2016. Hydrological changes of DOM composition and biodegradability of rivers in temperate monsoon climates. Journal of Hydrology 540: 538-548.   DOI
75 Singer, G.A., C. Fasching, L. Wilhelm, J. Niggemann, P. Steier, T. Dittmar and T.J. Battin. 2012. Biogeochemically diverse organic matter in Alpine glaciers and its downstream fate. Nature Geoscience 5: 710-714.   DOI
76 Stubbins, A., J.F. Lapierre, M. Berggren, Y.T. Prairie, T. Dittmar and P.A. del Giorgio. 2014. What's in an EEM? Molecular Signatures Associated with Dissolved Organic Fluorescence in Boreal Canada. Environmental Science & Technology 48: 10598-10606.   DOI
77 Stumm, W. and J.J. Morgan. 1996. Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters. Wiley, New York.
78 Tranvik, L.J., J.A. Downing, J.B. Cotner, S.A. Loiselle, R.G. Striegl, T.J. Ballatore, P. Dillon, K. Finlay, K. Fortino, L.B. Knoll, P.L. Kortelainen, T. Kutser, S. Larsen, I. Laurion, D.M. Leech, S.L. McCallister, D.M. McKnight, J.M. Melack, E. Overholt, J.A. Porter, Y. Prairie, W.H. Renwick, F. Roland, B.S. Sherman, D.W. Schindler, S. Sobek, A. Tremblay, M.J. Vanni, A.M. Verschoor, E. von Wachenfeldt and G.A. Weyhenmeyer. 2009. Lakes and reservoirs as regulators of carbon cycling and climate. Limnology and Oceanography 54: 2298-2314.   DOI
79 Xie, Y.F. 2004. Disinfection Byproducts in Drinking Water: Formation, Analysis, and Control. Lewis Pulbishers, Boca Raton, FL.
80 Wallin, M.B., T. Grabs, I. Buffam, H. Laudon, A. Agren, M.G. Oquist and K. Bishop. 2013. Evasion of $CO_2$ from streams -The dominant component of the carbon export through the aquatic conduit in a boreal landscape. Global Change Biology 19: 785-797.   DOI