DOI QR코드

DOI QR Code

Layered structure of sialoliths compared with tonsilloliths and antroliths

  • Buyanbileg Sodnom-Ish (Department of Oral and Maxillofacial Surgery, Dental Research Institute, School of Dentistry) ;
  • Mi Young Eo (Department of Oral and Maxillofacial Surgery, Dental Research Institute, School of Dentistry) ;
  • Yun Ju Cho (Department of Oral and Maxillofacial Surgery, Dental Research Institute, School of Dentistry) ;
  • Mi Hyun Seo (Department of Oral and Maxillofacial Surgery, Dental Research Institute, School of Dentistry) ;
  • Hyeong-Cheol Yang (Department of Dental Biomaterials Science, Dental Research Institute, School of Dentistry) ;
  • Min-Keun Kim (Department of Oral and Maxillofacial Surgery, College of Dentistry, Gangneung-Wonju National University) ;
  • Hoon Myoung (Department of Oral and Maxillofacial Surgery, Dental Research Institute, School of Dentistry) ;
  • Soung Min Kim (Department of Oral and Maxillofacial Surgery, Dental Research Institute, School of Dentistry)
  • Received : 2023.08.14
  • Accepted : 2023.09.19
  • Published : 2024.02.29

Abstract

Objectives: The aim of this study was to perform a comparative analysis of the ultrastructural and chemical composition of sialoliths, tonsilloliths, and antroliths and to describe their growth pattern. Materials and Methods: We obtained 19 specimens from 18 patients and classified the specimens into three groups: sialolith (A), tonsillolith (B), and antrolith (C). The peripheral, middle, and core regions of the specimens were examined in detail by histology, micro-computed tomography (micro-CT), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy, and transmission electron microscopy (TEM). Results: In the micro-CT, group A showed alternating radiodense and radiolucent layers, while group B had a homogeneous structure. Group C specimens revealed a compact homogeneous structure. Histopathologically, group A showed a laminated, teardrop-shaped, globular structure. Group B demonstrated degrees of immature calcification of organic and inorganic materials. In group C, the lesion was not encapsulated and showed a homogeneous lamellar bone structure. SEM revealed that group A showed distinct three layers: a peripheral multilayer zone, intermediate compact zone, and the central nidus area; groups B and C did not show these layers. The main elemental components of sialoliths were O, C, Ca, N, Cu, P, Zn, Si, Zr, F, Na, and Mg. In group B, a small amount of Fe was found in the peripheral region. Group C had a shorter component list: Ca, C, O, P, F, N, Si, Na, and Mg. TEM analysis of group A showed globular structures undergoing intra-vesicular calcification. In group B, bacteria were present in the middle layer. In the outer layer of the group C antrolith, an osteoblastic rimming was observed. Conclusion: Sialoliths had distinct three layers: a peripheral multilayer zone, an intermediate compact zone and the central nidus area, while the tonsillolith and antrolith specimens lacked distinct layers and a core.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (2022R1F1A1069624), and by grant No. 03-2023-0047 from the SNUDH Research Fund.

References

  1. Kodaka T, Debari K, Sano T, Yamada M. Scanning electron microscopy and energy-dispersive X-ray microanalysis studies of several human calculi containing calcium phosphate crystals. Scanning Microsc 1994;8:241-56; discussion 256-7. 
  2. Schapher M, Koch M, Weidner D, Scholz M, Wirtz S, Mahajan A, et al. Neutrophil extracellular traps promote the development and growth of human salivary stones. Cells 2020;9:2139. https://doi.org/10.3390/cells9092139 
  3. Rakesh N, Bhoomareddy Kantharaj YD, Agarwal M, Agarwal K. Ultrastructural and elemental analysis of sialoliths and their comparison with nephroliths. J Investig Clin Dent 2014;5:32-7. https:// doi.org/10.1111/j.2041-1626.2012.00157.x 
  4. Nolasco P, Anjos AJ, Aquino Marques JM, Cabrita F, Pereira MFC, Alves de Matos AP, et al. Structural typologies of salivary calculi. Microsc Microanal 2013;19(Suppl 4):29-30. https://doi.org/10.1017/S1431927613000767 
  5. Faklaris I, Bouropoulos N, Vainos NA. Composition and morphological characteristics of sialoliths. Cryst Res Technol 2013;48:632-40. https://doi.org/10.1002/crat.201300201 
  6. Anjos AJ, Nolasco P, Aquino Marques JM, Cabrita F, Pereira MFC, Alves de Matos AP, et al. On oral calcifications: sialoliths, dental calculi and tonsilloliths. Microsc Microanal 2013;19(Suppl 4):23-4. https://doi.org/10.1017/S1431927613000731 
  7. Nagra I, Jones C, Dyer J. Endoluminal intervention in the salivary duct: clinical outcomes at a district general hospital. Cardiovasc Intervent Radiol 2010;33:307-14. https://doi.org/10.1007/s00270-009-9731-3 
  8. Kraaij S, de Visscher JGAM, Apperloo RC, Nazmi K, Bikker FJ, Brand HS. Lactoferrin and the development of salivary stones: a pilot study. Biometals 2023;36:657-65. https://doi.org/10.1007/s10534-022-00465-7 
  9. Avishai G, Ben-Zvi Y, Chaushu G, Rosenfeld E, Gillman L, Reiser V, et al. The unique characteristics of sialolithiasis following drug-induced hyposalivation. Clin Oral Investig 2021;25:4369-76. https://doi.org/10.1007/s00784-020-03750-2 
  10. Harrison JD. Causes, natural history, and incidence of salivary stones and obstructions. Otolaryngol Clin North Am 2009;42:927-47, Table of Contents. https://doi.org/10.1016/j.otc.2009.08.012 
  11. Kraaij S, Karagozoglu KH, Forouzanfar T, Veerman EC, Brand HS. Salivary stones: symptoms, aetiology, biochemical composition and treatment. Br Dent J 2014;217:E23. https://doi.org/10.1038/sj.bdj.2014.1054 
  12. Su YX, Zhang K, Ke ZF, Zheng GS, Chu M, Liao GQ. Increased calcium and decreased magnesium and citrate concentrations of submandibular/sublingual saliva in sialolithiasis. Arch Oral Biol 2010;55:15-20. https://doi.org/10.1016/j.archoralbio.2009.11.006 
  13. Krespi YP, Kizhner V. Laser tonsil cryptolysis: in-office 500 cases review. Am J Otolaryngol 2013;34:420-4. https://doi.org/10.1016/j.amjoto.2013.03.006 
  14. Stoodley P, Debeer D, Longwell M, Nistico L, Hall-Stoodley L, Wenig B, et al. Tonsillolith: not just a stone but a living biofilm. Otolaryngol Head Neck Surg 2009;141:316-21. https://doi.org/10.1016/j.otohns.2009.05.019 
  15. Chen HH, Yi CA, Chen YC, Tsai CC, Lin PY, Huang HH. Influence of maxillary antrolith on the clinical outcome of implants placed simultaneously with osteotome sinus floor elevation: a retrospective radiographic study. Clin Implant Dent Relat Res 2021;23:833-41. https://doi.org/10.1111/cid.13043 
  16. Henriques JC, Kreich EM, Rosa RR, Castilho JC, de Moraes LC, de Moraes ME. Noninvasive aspergillosis as a maxillary antrolith: report of a rare case. Quintessence Int 2012;43:143-6. 
  17. Sodnom-Ish B, Eo MY, Cho YJ, Seo MH, Yang HC, Kim MK, et al. Identification of biological components for sialolith formation organized in circular multi-layers. Sci Rep 2023;13:12277. https://doi.org/10.1038/s41598-023-37462-w 
  18. Mustakim KR, Nguyen TTH, Eo MY, Kim SM. Histopathology and ultrastructural findings of pediatric sialolithiasis: a brief communication. J Korean Assoc Oral Maxillofac Surg 2022;48:125-9. https://doi.org/10.5125/jkaoms.2022.48.2.125 
  19. Khan SR, Pearle MS, Robertson WG, Gambaro G, Canales BK, Doizi S, et al. Kidney stones. Nat Rev Dis Primers 2016;2:16008. https://doi.org/10.1038/nrdp.2016.8 
  20. Matsuura K, Maehara N, Hirota A, Eguchi A, Yasuda K, Taniguchi K, et al. Two independent modes of kidney stone suppression achieved by AIM/CD5L and KIM-1. Commun Biol 2022;5:783. https://doi.org/10.1038/s42003-022-03750-w 
  21. Sivaguru M, Saw JJ, Williams JC Jr, Lieske JC, Krambeck AE, Romero MF, et al. Geobiology reveals how human kidney stones dissolve in vivo. Sci Rep 2018;8:13731. https://doi.org/10.1038/s41598-018-31890-9 
  22. Miller AW, Penniston KL, Fitzpatrick K, Agudelo J, Tasian G, Lange D. Mechanisms of the intestinal and urinary microbiome in kidney stone disease. Nat Rev Urol 2022;19:695-707. https://doi.org/10.1038/s41585-022-00647-5 
  23. Zarse CA, McAteer JA, Sommer AJ, Kim SC, Hatt EK, Lingeman JE, et al. Nondestructive analysis of urinary calculi using micro computed tomography. BMC Urol 2004;4:15. https://doi.org/10.1186/1471-2490-4-15 
  24. Williams JC Jr, McAteer JA, Evan AP, Lingeman JE. Microcomputed tomography for analysis of urinary calculi. Urol Res 2010;38:477-84. https://doi.org/10.1007/s00240-010-0326-x 
  25. Leng S, Huang A, Cardona JM, Duan X, Williams JC, McCollough CH. Dual-energy CT for quantification of urinary stone composition in mixed stones: a phantom study. AJR Am J Roentgenol 2016;207:321-9. https://doi.org/10.2214/ajr.15.15692 
  26. Larsen T, Fiehn NE. Dental biofilm infections - an update. APMIS 2017;125:376-84. https://doi.org/10.1111/apm.12688 
  27. Penescu M, Purcarea VL, Sisu I, Sisu E. Mass spectrometry and renal calculi. J Med Life 2010;3:128-36. 
  28. Xie B, Halter TJ, Borah BM, Nancollas GH. Aggregation of calcium phosphate and oxalate phases in the formation of renal stones. Cryst Growth Des 2015;15:204-11. https://doi.org/10.1021/cg501209h 
  29. Takeda Y. Crystalloids with calcareous deposition in the parotid gland: one of the possible causes of development of salivary calculi. J Oral Pathol 1986;15:459-61. https://doi.org/10.1111/j.1600-0714.1986.tb00658.x 
  30. Nolasco P, Anjos AJ, Marques JM, Cabrita F, da Costa EC, Mauricio A, et al. Structure and growth of sialoliths: computed microtomography and electron microscopy investigation of 30 specimens. Microsc Microanal 2013;19:1190-203. https://doi.org/10.1017/s1431927613001694 
  31. Kasaboglu O, Er N, Tumer C, Akkocaoglu M. Micromorphology of sialoliths in submandibular salivary gland: a scanning electron microscope and X-ray diffraction analysis. J Oral Maxillofac Surg 2004;62:1253-8. https://doi.org/10.1016/j.joms.2003.11.018 
  32. Liesegang RE. Uber einige eigenschaften von gallerten. Naturwissensch Wochenschr 1896;11:353-62. German. 
  33. Ostwald W. Zur theorie der Liesegang'schen Ringe. Kolloid Z 1925;36:380-90. German. https://doi.org/10.1007/BF01451976 
  34. Jayasree RS, Gupta AK, Vivek V, Nayar VU. Spectroscopic and thermal analysis of a submandibular sialolith of Wharton's duct resected using Nd:YAG laser. Lasers Med Sci 2008;23:125-31. https://doi.org/10.1007/s10103-007-0458-6 
  35. Giray CB, Dogan M, Akalin A, Baltrusaitis J, Chan DC, Skinner HC, et al. Sialolith characterization by scanning electron microscopy and X-ray photoelectron spectroscopy. Scanning 2007;29:206-10. https://doi.org/10.1002/sca.20069 
  36. Mimura M, Tanaka N, Ichinose S, Kimijima Y, Amagasa T. Possible etiology of calculi formation in salivary glands: biophysical analysis of calculus. Med Mol Morphol 2005;38:189-95. https://doi.org/10.1007/s00795-005-0290-7 
  37. Favus MJ, Feingold KR. Kidney stone emergencies. In: Feingold KR, Anawalt B, Blackman MR, Boyce A, Chrousos G, Corpas E, et al., eds. Endotext. MDText.com, Inc.; 2018. 
  38. Pachisia S, Mandal G, Sahu S, Ghosh S. Submandibular sialolithiasis: a series of three case reports with review of literature. Clin Pract 2019;9:1119. https://doi.org/10.4081/cp.2019.1119