• Title/Summary/Keyword: injective module.

Search Result 103, Processing Time 0.019 seconds

Nil-COHERENT RINGS

  • Xiang, Yueming;Ouyang, Lunqun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.2
    • /
    • pp.579-594
    • /
    • 2014
  • Let R be a ring and $Nil_*$(R) be the prime radical of R. In this paper, we say that a ring R is left $Nil_*$-coherent if $Nil_*$(R) is coherent as a left R-module. The concept is introduced as the generalization of left J-coherent rings and semiprime rings. Some properties of $Nil_*$-coherent rings are also studied in terms of N-injective modules and N-flat modules.

ON INJECTIVITY AND P-INJECTIVITY, IV

  • Chi Ming, Roger Yue
    • Bulletin of the Korean Mathematical Society
    • /
    • v.40 no.2
    • /
    • pp.223-234
    • /
    • 2003
  • This note contains the following results for a ring A : (1) A is simple Artinian if and only if A is a prime right YJ-injective, right and left V-ring with a maximal right annihilator ; (2) if A is a left quasi-duo ring with Jacobson radical J such that $_{A}$A/J is p-injective, then the ring A/J is strongly regular ; (3) A is von Neumann regular with non-zero socle if and only if A is a left p.p.ring containing a finitely generated p-injective maximal left ideal satisfying the following condition : if e is an idempotent in A, then eA is a minimal right ideal if and only if Ae is a minimal left ideal ; (4) If A is left non-singular, left YJ-injective such that each maximal left ideal of A is either injective or a two-sided ideal of A, then A is either left self-injective regular or strongly regular : (5) A is left continuous regular if and only if A is right p-injective such that for every cyclic left A-module M, $_{A}$M/Z(M) is projective. ((5) remains valid if 《continuous》 is replaced by 《self-injective》 and 《cyclic》 is replaced by 《finitely generated》. Finally, we have the following two equivalent properties for A to be von Neumann regula. : (a) A is left non-singular such that every finitely generated left ideal is the left annihilator of an element of A and every principal right ideal of A is the right annihilator of an element of A ; (b) Change 《left non-singular》 into 《right non-singular》in (a).(a).

PROJECTIVE PROPERTIES OF REPRESENTATIONS OF A QUIVER Q = • → • AS R[x]-MODULES

  • Park, Sangwon;Kang, Junghee;Han, Juncheol
    • Korean Journal of Mathematics
    • /
    • v.18 no.3
    • /
    • pp.243-252
    • /
    • 2010
  • In this paper we extend the projective properties of representations of a quiver $Q={\bullet}{\rightarrow}{\bullet}$ as left R-modules to the projective properties of representations of quiver $Q={\bullet}{\rightarrow}{\bullet}$ as left $R[x]$-modules. We show that if P is a projective left R-module then $0{\rightarrow}P[x]$ is a projective representation of a quiver $Q={\bullet}{\rightarrow}{\bullet}$ as $R[x]$-modules. And we show $0{\rightarrow}L$ is a projective representation of $Q={\bullet}{\rightarrow}{\bullet}$ as R-module if and only if $0{\rightarrow}L[x]$ is a projective representation of a quiver $Q={\bullet}{\rightarrow}{\bullet}$ as $R[x]$-modules. Then we show if P is a projective left R-module then $R[x]\longrightarrow^{id}P[x]$ is a projective representation of a quiver $Q={\bullet}{\rightarrow}{\bullet}$ as $R[x]$-modules. We also show that if $L\longrightarrow^{id}L$ is a projective representation of $Q={\bullet}{\rightarrow}{\bullet}$ as R-module, then $L[x]\longrightarrow^{id}L[x]$ is a projective representation of a quiver $Q={\bullet}{\rightarrow}{\bullet}$ as $R[x]$-modules.

PROJECTIVE REPRESENTATIONS OF A QUIVER WITH THREE VERTICES AND TWO EDGES AS R[x]-MODULES

  • Han, Juncheol;Park, Sangwon
    • Korean Journal of Mathematics
    • /
    • v.20 no.3
    • /
    • pp.343-352
    • /
    • 2012
  • In this paper we show that the projective properties of representations of a quiver $Q={\bullet}{\rightarrow}{\bullet}{\rightarrow}{\bullet}$ as left $R[x]$-modules. We show that if P is a projective left R-module then $0{\longrightarrow}0{\longrightarrow}P[x]$ is a projective representation of a quiver Q as $R[x]$-modules, but $P[x]{\longrightarrow}0{\longrightarrow}0$ is not a projective representation of a quiver Q as $R[x]$-modules, if $P{\neq}0$. And we show a representation $0{\longrightarrow}P[x]\longrightarrow^{id}P[x]$ of a quiver Q is a projective representation, if P is a projective left R-module, but $P[x]\longrightarrow^{id}P[x]{\longrightarrow}0$ is not a projective representation of a quiver Q as $R[x]$-modules, if $P{\neq}0$. Then we show a representation $P[x]\longrightarrow^{id}P[x]\longrightarrow^{id}P[x]$ of a quiver Q is a projective representation, if P is a projective left R-module.

THE u-S-GLOBAL DIMENSIONS OF COMMUTATIVE RINGS

  • Wei Qi;Xiaolei Zhang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.6
    • /
    • pp.1523-1537
    • /
    • 2023
  • Let R be a commutative ring with identity and S a multiplicative subset of R. First, we introduce and study the u-S-projective dimension and u-S-injective dimension of an R-module, and then explore the u-S-global dimension u-S-gl.dim(R) of a commutative ring R, i.e., the supremum of u-S-projective dimensions of all R-modules. Finally, we investigate u-S-global dimensions of factor rings and polynomial rings.

THE BONGARTZ'S THEOREM OF GORENSTEIN COSILTING COMPLEXES

  • Hailou Yao ;Qianqian Yuan
    • Journal of the Korean Mathematical Society
    • /
    • v.60 no.6
    • /
    • pp.1337-1364
    • /
    • 2023
  • We describe the Gorenstein derived categories of Gorenstein rings via the homotopy categories of Gorenstein injective modules. We also introduce the concept of Gorenstein cosilting complexes and study its basic properties. This concept is generalized by cosilting complexes in relative homological methods. Furthermore, we investigate the existence of the relative version of the Bongartz's theorem and construct a Bongartz's complement for a Gorenstein precosilting complex.

Almost Projective Modules over Artin Algebras

  • Park, Jun Seok
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.1 no.1
    • /
    • pp.43-53
    • /
    • 1988
  • The main result of this paper is a characterization of almost projective modules over art in algebras by means of irreducible maps and almost split sequences. A module X is an almost projective module if and only if it has a presentation $0{\longrightarrow}L{\longrightarrow^{\alpha}}P{\longrightarrow}X{\longrightarrow}0$ with projective module P and irreducible maps ${\alpha}$. Let X be an injective almost projective non simple module and $0{\rightarrow}Dtr(x){\rightarrow}E{\rightarrow}X{\rightarrow}0$ be an almost split sequence. If $E=E_1{\oplus}E_2$ is a direct decomposition of indecomposable modules then ${\ell}(X)=3$.

  • PDF

ON ϕ-(n, d) RINGS AND ϕ-n-COHERENT RINGS

  • Younes El Haddaoui;Hwankoo Kim;Najib Mahdou
    • Communications of the Korean Mathematical Society
    • /
    • v.39 no.3
    • /
    • pp.623-642
    • /
    • 2024
  • This paper introduces and studies a generalization of (n, d)-rings introduced and studied by Costa in 1994 to rings with prime nilradical. Among other things, we establish that the ϕ-von Neumann regular rings are exactly either ϕ-(0, 0) or ϕ-(1, 0) rings and that the ϕ-Prüfer rings which are strongly ϕ-rings are the ϕ-(1, 1) rings. We then introduce a new class of rings generalizing the class of n-coherent rings to characterize the nonnil-coherent rings introduced and studied by Bacem and Benhissi.