• Title/Summary/Keyword: initial equilibrium state

Search Result 94, Processing Time 0.03 seconds

Analyzing off-line Noah land surface model spin-up behavior for initialization of global numerical weather prediction model (전지구수치예측모델의 토양수분 초기화를 위한 오프라인 Noah 지면모델 스핀업 특성분석)

  • Jun, Sanghee;Park, Jeong-Hyun;Boo, Kyung-On;Kang, Hyun-Suk
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.3
    • /
    • pp.181-191
    • /
    • 2020
  • In order to produce accurate initial condition of soil moisture for global Numerical Weather Prediction (NWP), spin-up experiment is carried out using Noah Land Surface Model (LSM). The model is run repeatedly through 10 years, under the atmospheric forcing condition of 2008-2017 until climatological land surface state is achieved. Spin-up time for the equilibrium condition of soil moisture exhibited large variability across Koppen-Geiger climate classification zone and soil layer. Top soil layer took the longgest time to equilibrate in polar region. From the second layer to the fourth layer, arid region equilibrated slower (7 years) than other regions. This result means that LSM reached to equilibrium condition within 10 year loop. Also, spin-up time indicated inverse correlation with near surface temperature and precipitation amount. Initialized from the equilibrium state, LSM was spun up to obtain land surface state in 2018. After 6 months from restarted run, LSM simulates soil moisture, skin temperature and evaportranspiration being similar land surface state in 2018. Based on the results, proposed LSM spin-up system could be used to produce proper initial soil moisture condition despite updates of physics or ancillaries for LSM coupled with NWP.

A Study on the Velocity Distribution of Gas Molecules by the Molecular Dynamics Method (분자동역학법에 의한 기체분자의 속도분포에 관한 연구)

  • 최순호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.3
    • /
    • pp.441-450
    • /
    • 2004
  • The velocity distribution of gas molecules from the experimental results was confirmed as the same with the Maxwell-Boltzmann's theoretical results within the experimental error. This study is on the realization of the Maxwell-Boltzmann's velocity distribution of gas molecules by the molecular dynamics(MD) method. The Maxwell-Boltzmann's velocity distribution of gas molecules is extremely important to confirm the equilibrium state because the properties of a thermodynamic system shall be obtained from the system's equilibrium configuration in the MD method. This study is the first trial in the successive researches to calculate the properties of a thermodynamic system by the computer simulations. We confirmed that the maxwell-boltzmann's velocity distribution is developed in some transient time after starting a simulation and dependent on the size of a system. Also it is found that the velocity distribution has no relation with an initial configuration of gas molecules.

Existence of a nash equilibrium to differential games with nonlinear constraints

  • Kim, Yang-Yol
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1989.10a
    • /
    • pp.45-50
    • /
    • 1989
  • The above theorm states that much larger classes of differential games have an equilibrium. The most severe assumption is the second one. It requires that state dynamic equations be linear on his own control variables. But, the dynamic programming approach applied in the above is hardly implementable for the purpose of computation. It is very difficult to solve (SP$_{it}$) directly. Notice, however, the problem can be transformed into a Hamiltonian maximization problem which is easy to solve if initial conditions are given. In this way, it is possible to design a solution algorithm to problems with nonlinear constraints. The above two theorems probide a basis for such an algorithm.m.

  • PDF

Presteady State Kinetics of ATP Hydrolysis by Escherichia coli Rho Protein Monitors the Initiation Process

  • Jeong, Yong-Ju;Kim, Dong-Eun
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.2
    • /
    • pp.224-230
    • /
    • 2006
  • Escherichia coli transcription termination factor Rho catalyzes the unwinding of RNA/DNA duplex in reactions that are coupled to ATP binding and hydrolysis. We report here the kinetic mechanism of presteady state ATP binding and hydrolysis by the Rho-RNA complex. Presteady state chemical quenched-flow technique under multiple turnover condition was used to probe the kinetics of ATP binding and hydrolysis by the Rho-RNA complex. The quenched-flow presteady state kinetics of ATP hydrolysis studies show that three ATPs are bound to the Rho-RNA complex with a rate of $4.4\;{\times}\;10^5M^{-1}s^{-1}$, which are subsequently hydrolyzed at a rate of $88s^{-1}$ and released during the initiation process. Global fit of the presteady state ATP hydrolysis kinetic data suggests that a rapid-equilibrium binding of ATP to Rho-RNA complex occurs prior to the first turnover and the chemistry step is not reversible. The initial burst of three ATPs hydrolysis was proposed to be involved in the initialization step that accompanies proper complex formation of Rho-RNA. Based on these results a kinetic model for initiation process for Rho-RNA complex was proposed relating the mechanism of ATP binding and hydrolysis by Rho to the structural transitions of Rho-RNA complex to reach the steady state phase, which is implicated during translocation along the RNA.

Molecular dynamics study of liquid sodium film evaporation and condensation by Lennard-Jones potential

  • Wang, Zetao;Guo, Kailun;Wang, Chenglong;Zhang, Dalin;Tian, Wenxi;Qiu, Suizheng;Su, Guanghui
    • Nuclear Engineering and Technology
    • /
    • v.54 no.8
    • /
    • pp.3117-3129
    • /
    • 2022
  • Deeply understanding the phase change of thin liquid sodium film inside wick pore is very important for further studying high-temperature sodium heat pipe's heat transfer. For the first time, the evaporation and condensation of thin liquid sodium film are investigated by the Lennard-Jones potential of molecular dynamics. Based on the startup and normal operation of the sodium heat pipe, three different cases are simulated. First, the equilibrium is achieved and the Mass Accommodation Coefficients of the three cases are 0.3886, 0.2119, 0.2615 respectively. Secondly, the non-equilibrium is built. The change of liquid film thickness, the number of gas atoms, the net evaporation flux (Jnet), the heat transfer coefficient (h) at the liquid-gas interface are acquired. Results indicate that the magnitude of the Jnet and the h increase with the basic equilibrium temperature. In 520-600 K (the startup of the heat pipe), the h has approached 5-6 W m-2 K-1 while liquid film thickness is in 11-13 nm. The fact shows that during the initial startup of the sodium heat pipe, the thermal resistance at the liquid-gas interface can't be negligible. This work is the complement and extension for macroscopic investigation of heat transfer inside sodium heat pipe. It can provide a reference for further numerical simulation and optimal design of the sodium heat pipe in the future.

Adsorption Characteristics of Lead on Kaolinite (카올리나이트의 납 흡착 특성)

  • 장경수;강병희
    • Journal of Soil and Groundwater Environment
    • /
    • v.7 no.4
    • /
    • pp.24-30
    • /
    • 2002
  • The laboratory adsorption batch tests were performed to investigate the adsorption characteristics of Pb on kaolinite. The characteristics such as adsorption equilibrium time, adsorption capacity, adsorption isotherm were studied, and also the effects of pH and the mixing ratio on the adsorption of Pb on kaolinite were investigated. Test results show that the adsorption equilibrium state was reached within 24 hours, and the adsorbed amount of Pb increased, but the adsorption efficiency over the initial concentration of 198 mg/l decreased, with increasing the initial concentration of Pb. And the adsorption constant, 1/n was obtained 0.9584 by Freundlich isotherm equation. Regardless of the initial concentration of Pb. the adsorbed amount of Pb as well as the adsorption efficiency were increased with increasing pH values and converged to a certain constant value above 8 of pH values. And also the adsorbed amount of Pb increased with the mixing ratio, but its efficiency increased with the mixing ratio up to 8 and then showed the decreasing tendency above that.

Buckling Analysis of Axisymmetric Shells by Incremental Finite Element Mothod (증분형(增分形) 유한요소법(有限要素法)에 의한 축대칭(軸對稱) Shell구조(構造)의 좌굴해석(挫屈解析))

  • J.B.,Kim;C.Y.,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.22 no.1
    • /
    • pp.21-30
    • /
    • 1985
  • This paper deals whth the buckling as well as postbuckling analysis of axisymmertric shells taking the initial deflection effects into account. Incremental equilibrium equations, based on the principle of virtual work, were derived by the finite element method, the successive step-by-step Newton-Raphson iterative technique was adopted. To define the transition pattern of postbuckling behavior from the prebuckling state more accurately, a simple solution method was developed, i.e. the critical load was calculated by the load extrapolation method with the determinant of tangent stiffness matrix and the equilibrium configuration in the immediate postbuckling stage was obtained by perturbation scheme and eigenvalue analysis. Degenerated isoparametric shell elements were used to analyse the axisymmetric shell of revolution. And by the method developed in this paper, the computer program applicable to the nonlinear analysis of both thin and moderately thick shells was constructed. To verify the capabilities and accuracies of the present solution method, the computed results were compared with the results of analytical solutions. These results coincided fairly well in both the small deflection and large deflection ranges. Various numerical analyses were done to show the effect of initial deflection and shape of shells on buckling load and postbuckling behavior. Futhermore, corrected directions of applied loads at every increment steps were used to determine the actual effects of large deflection in non-conservative load systems such as hydrostatic pressure load. The following conclusions can be obtained. (1) The method described in this paper was found to be both economic and effective in calculating buckling load and postbuckling behavior of shell structure. (2) Buckling and postbuckling behavior of spherical caps is critically dependent upon their geometric configuration, i.e. the shape of spherical cap and quantities of the initial deflection. (3) In the analysis of large deflection problems of shells by the incremental method, corrections of the applied load directions are needed at every incremental step to compensate the follower force effects.

  • PDF

Entry Deterrence and Price Competition under Asymmetric Information (비대칭적 정보 하에서 진입 억제와 가격 경쟁)

  • Maeng, Jooyol;Choi, Sungyong
    • Korean Management Science Review
    • /
    • v.33 no.4
    • /
    • pp.65-75
    • /
    • 2016
  • We study limit pricing in a price-based duopoly market under asymmetric information on the demand state. An incumbent, who is a monopolist in the initial period, has complete information on the size of a market, while a potential entrant only knows it partially. After observing the sales price of the incumbent in the first period, the entrant decides whether to enter a duopoly market and the sales price if she chooses to. We present a separating perfect Bayesian equilibrium, which indicates that limit pricing can deter the entry of a potential entrant under price competition when there is information asymmetry about the demand state.

Form Finding of a Single-layered Pneumatic Membrane Structures by Using Nonlinear Force Method (비선형 내력법을 이용한 단일 공기막의 형상 탐색)

  • Shon, Sudeok;Ha, Junhong;Lee, Seungjae
    • Journal of Korean Association for Spatial Structures
    • /
    • v.21 no.4
    • /
    • pp.49-56
    • /
    • 2021
  • This study aims to develop a form-finding algorithm for a single-layered pneumatic membrane. The initial shape of this pneumatic membrane, which is an air-supported type pneumatic membrane, is to find a state in which a given initial tension and internal pneumatic pressure are in equilibrium. The algorithm developed to satisfy these conditions is that a nonlinear optimization problem based on the force method considering the deformed shape is formulated, and, it's able to find the shape by iteratively repeating the process of obtaining a solution of the governing equations. An computational technique based on the Gauss-Newton method was used as a method for obtaining solutions of nonlinear equations. In order to verify the validity of the proposed form-finding algorithm, a single-curvature pneumatic membrane example and a double-curvature air pneumatic membrane example were adopted, respectively. In the results of these examples, it was possible to well observe the step-by-step convergence process of the shape of the pneumatic membrane, and it was also possible to confirm the change in shape according to the air pressure. In addition, the calculation results of the shape and internal force after deformation due to initial tension, air pressure, and self-weight were obtained.

Preparation of Alginate/Poly(N-isopropylacrylamide) Hydrogels Using Gamma-ray Irradiation Grafting

  • Lee, Young-Moo;Lee, Sang-Bong;Seo, Sung-Mi;Lim, Youn-Mook;Cho, Seong-Kwan;Nho, Young-Chang
    • Macromolecular Research
    • /
    • v.12 no.3
    • /
    • pp.269-275
    • /
    • 2004
  • To graft N-isopropylacrylamide (NIPAAm) onto alginate, varying dosages of ${\gamma}$-rays were irradiated onto alginate films in deionized water and methanol media, which are non-solvents of alginate. We investigated the hydrogels graft ratio, mechanical strength, swelling kinetics and ratio, and behavior with respect to drug release. The graft yield of NIPAAm increased upon increasing the irradiation dose. The use of the aqueous solution increased the graft yield relative to that obtained in methanol. The mechanical strength of the grafted hydrogels increased after grafting with NIPAAm. In a study of the swelling kinetics, we found that all hydrogels reached an equilibrium swollen state within 3 h. The equilibrium swelling ratio of the hydrogels decreased upon increasing the irradiation dose. The swelling ratio of the hydrogels decreased dramatically between 30 and 35$^{\circ}C$ because phase separation of NIPAAm occurred at 32$^{\circ}C$. The swelling process, with respect to the temperature change, was repeatable. An NIPAAm-grafted alginate containing a drug sustained its release rate until 3 h after an initial high drug release caused by a burst effect.