Browse > Article
http://dx.doi.org/10.5012/bkcs.2006.27.2.224

Presteady State Kinetics of ATP Hydrolysis by Escherichia coli Rho Protein Monitors the Initiation Process  

Jeong, Yong-Ju (Department of Bio and Nanochemistry, Kookmin University)
Kim, Dong-Eun (Department of Biotechnology and Bioengineering, and Department of Biomaterial Control, Dong-Eui University)
Publication Information
Abstract
Escherichia coli transcription termination factor Rho catalyzes the unwinding of RNA/DNA duplex in reactions that are coupled to ATP binding and hydrolysis. We report here the kinetic mechanism of presteady state ATP binding and hydrolysis by the Rho-RNA complex. Presteady state chemical quenched-flow technique under multiple turnover condition was used to probe the kinetics of ATP binding and hydrolysis by the Rho-RNA complex. The quenched-flow presteady state kinetics of ATP hydrolysis studies show that three ATPs are bound to the Rho-RNA complex with a rate of $4.4\;{\times}\;10^5M^{-1}s^{-1}$, which are subsequently hydrolyzed at a rate of $88s^{-1}$ and released during the initiation process. Global fit of the presteady state ATP hydrolysis kinetic data suggests that a rapid-equilibrium binding of ATP to Rho-RNA complex occurs prior to the first turnover and the chemistry step is not reversible. The initial burst of three ATPs hydrolysis was proposed to be involved in the initialization step that accompanies proper complex formation of Rho-RNA. Based on these results a kinetic model for initiation process for Rho-RNA complex was proposed relating the mechanism of ATP binding and hydrolysis by Rho to the structural transitions of Rho-RNA complex to reach the steady state phase, which is implicated during translocation along the RNA.
Keywords
E. coli transcription termination factor Rho; Presteady state kinetics; Global fit; Rapid-equili-brium; Chemical quenched-flow technique;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 Burgess, B. R.; Richardson, J. P. J. Biol. Chem. 2001, 276, 41
2 Richardson, J. P. Cell 2003, 114, 157   DOI   ScienceOn
3 Geiselmann, J.; von Hippel, P. H. Protein Sci. 1992, 1, 850   DOI
4 Kim, D. E.; Shigesada, K.; Patel, S. S. J. Biol. Chem. 1999, 274, 11623   DOI   ScienceOn
5 Mori, H.; Imai, M.; Shigesada, K. J. Mol. Biol. 1989, 210, 39   DOI
6 Brennan, C. A.; Dombroski, A. J.; Platt, T. Cell 1987, 48, 945   DOI   ScienceOn
7 Bogden, C. E.; Fass, D.; Bergman, N.; Nichols, M. D.; Berger, J. M. Molecular Cell 1999, 3, 487   DOI   ScienceOn
8 Geiselmann, J.; Yager, T. D.; von Hippel, P. H. Protein Sci. 1992, 1, 861   DOI
9 Kim, D. E.; Patel, S. S. J. Biol. Chem. 2001, 276, 13902   DOI
10 Johnson, K. A. Methods in Enzymology 1995, 249, 38   DOI
11 Stitt, B. L.; Xu, Y. J. Biol. Chem. 1998, 273, 26477   DOI   ScienceOn
12 Yu, X.; Jezewska, M. J.; Bujalowski, W.; Egelman, E. H. J. Mol. Biol. 1996, 259, 7   DOI   ScienceOn
13 Jezewska, M. J.; Bujalowski, W. J. Biol. Chem. 1996, 271, 4261   DOI
14 Bujalowski, W.; Jezewska, M. J. Biochemistry 2000, 39, 2106   DOI   ScienceOn
15 Finger, L. R.; Richardson, J. P. Biochemistry 1981, 20, 1640   DOI   ScienceOn
16 Jeong, Y. J.; Kim, D. E.; Patel, S. S. J. Biol. Chem. 2004, 279, 18370   DOI   ScienceOn
17 Kim, J.; Choi, J.-D.; Kim, B.-H.; Yoon, M.-Y. Bull. Kor. Chem. Soc. 2005, 26, 260   DOI   ScienceOn
18 Kim, D. E.; Patel, S. S. J. Biol. Chem. 1999, 274, 32667   DOI
19 Geiselmann, J.; Wang, Y.; Seifried, S. E.; von Hippel, P. H. Proc. Natl. Acad. Sci. USA 1993, 90, 7754   DOI   ScienceOn
20 Stitt, B. L. J. Biol. Chem. 1988, 263, 11130