• Title/Summary/Keyword: initial element

Search Result 1,671, Processing Time 0.027 seconds

Design of Initial Billet using the Artificial Neural Network for a Hot Forged Product (신경망을 이용한 열간단조품의 초기 소재 설계)

  • Kim, D.J.;Kim, B.M.;Park, J.C.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.11
    • /
    • pp.118-124
    • /
    • 1995
  • In the paper, we have proposed a new technique to determine the initial billet for the forged products using a function approximation in neural network. A three-layer neural network is used and a back propagation algorithm is employed to train the network. An optimal billet which satisfied the forming limitation, minimum of incomplete filling in the die cavity, load and energy as well as more uniform distribution of effective strain, is determined by applying the ability of function approximation of the neural network. The amount of incomplete filling in the die, load and forming energy as well as effective strain are measured by the rigid-plastic finite element method. This new technique is applied to find the optimal billet size for the axisymmetric rib-web product in hot forging. This would reduce the number of finite element simulation for determining the optimal billet of forging products, further it is usefully adopted to physical modeling for the forging design

  • PDF

A Detailed Investigation on Coupled Lateral and Torsional Vibration Characteristics in a Speed Increasing Geared Rotor-Bearing system (증속 기어전동 로터-베어링 시스템에서 횡-비틀림 연성진동 특성의 상세 고찰)

  • 이안성;하진웅;최동훈
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.722-728
    • /
    • 2001
  • Applying a general coupled lateral and torsional vibration finite element model of gear pair element this paper intends to look into in detail the coupled lateral and torsional vibration characteristics in a turbo-chiller rotor bearing system, having a bull-pinion speed increasing gear. Investigations have been carried out systematically by comparing the uncoupled and coupled analyses natural vibration frequencies and their mode shapes upon varying the gear mesh stiffness, and also by comparing the strain energies of lateral and torsional vibration modes. Results have shown that some modes may have coupled lateral and torsional mode characteristics as the gear mesh stiffness increases over a certain value, and moreover that their associated dominant modes may be different from their initial modes, i.e., the dominant mode changes from an initial torsional one to a lateral one or from an initial lateral one to a torsional one.

  • PDF

Application of the Backward Tracing Scheme of Finite Element Method for the Tailored Blank Design and Welding Line Movement in Sheet Metal Forming with Two Different Thickness (두께가 다른 두 용접관계 성형에 있어서 블랭크 설계 및 용접선 이동에 대한 유한요소법의 역추적 기법적용)

  • 최환호
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.49-52
    • /
    • 1999
  • Tailored-welded blanks are used for forming of automobile structural and skin components. Its main objective is to achieve weight and production cost reduction in manufacturing of the components. For successful application of tailored-welded blanks design of initial welded blanks and prediction of welding line movement are critical. Here the utilization of the backward tracing scheme of the finite element method shows to be desirable in design of initial welded blanks for net-shape production and in prediction of the welding line movement. First the design of initial blank in forming of welded thick sheet with isotropy is tried and it appears successful in obtaining a net-shape stamping product. Based in the first approach the backward tracing scheme is applied to anisotropic tailored blank. The welding line movement is also discussed.

  • PDF

Single-axis Flat Electro-Magnetic Actuator using Shorted Turn for Fast Initial Response (평판형 전자기 엑츄에이터의 초기응답속도 향상을 위한 쇼티트 턴에 관한 연구)

  • Hwang, Ki-Il;Kim, Jin-Ho
    • Journal of the Korean Magnetics Society
    • /
    • v.19 no.6
    • /
    • pp.222-226
    • /
    • 2009
  • This paper presents the new design of flat electromagnetic actuator. Novel shorted turn and copper center pole are placed into existent design in order to reduce the inductance of coil and accelerate the initial response. Finite element analysis using commercial electromagnetic solver “MAXWELL” is performed to simulate the improvement of dynamic characteristics such as fast initial response and so on.

Application of Initial Stress Method on Elasto-plastic Problem in Boundary Element Method (경계요소법의 탄소성문제에 대한 초기응력법의 적용)

  • Soo, Lyong-Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.6 s.150
    • /
    • pp.683-692
    • /
    • 2006
  • The BEM, known as solving boundary value problems, could have some advantages In solving domain problems which are mostly solved by FEM and FDM. Lately, in the elastic-plastic nonlinear problems, BEM could provide the subdomain approach for the region where the plastic deformation could occur and the unknown nodal displacement of this region are added as the unknown of the boundary integral equation for this approach. In this paper, initial stress method was used to establish the formulation of such BEM approach. And a simple rectangular plate having a circular hole was analyzed to verify the suggested method and the result is compared with that from FEM. It is shown that the result of two methods are showing similar stress-strain curves at the root of perforated plate and furthermore the plastic deformation obtained by BEM shows more reasonable behavior than that of FEM.

A Study on the Springback for Three Point Bending (3점 굽힘에서의 스프링백에 관한 연구)

  • 이호용;황병복
    • Transactions of Materials Processing
    • /
    • v.3 no.4
    • /
    • pp.401-414
    • /
    • 1994
  • Springback for the three point bending is anlayzed and experimented. Neutral axis is assumed to remain at the midthickness for large ratio of radius of curvature to thickness. Pure bending theory is used to be extended to the analysis of the springback for three point bending. The specimen is thought to be divided into numerous small elements. The theory for pure bending is then adopted for analysis of each element to obtain springback in terms of the relationship between initial and final deflections. the boundary conditions between neighborhood elements are the deflection and slope which should be the same. Deflection is calculated by summing up the deflections of each element. Experiments have been performed for different conditions which are punch radius, span length, and initial deflections. Comparisons between the analytical solution and experimental results show the same trends.

  • PDF

Effect of Pressure and Initial Polymer Resist Thickness on Low Temperature Nanoimprint Lithography (저온 나노임프린트 공정에서 압력과 폴리머 레지스트 초기 두께의 영향)

  • Kim, Nam-Woong;Kim, Kug-Weon;Sin, Hyo-Chol
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.18 no.1
    • /
    • pp.68-75
    • /
    • 2009
  • A major disadvantage of thermal nanoimprint lithography(NIL) is the thermal cycle, that is, heating over glass transition temperature and then cooling below it, which requires a significant amount of processing time and limits the throughput. One of the methods to overcome this disadvantage is to make the processing temperature lower Accordingly, it is necessary to determine the effects on the processing parameters for thermal NIL at reduced temperatures and to optimize the parameters. This starts with a clear understanding of polymer material behavior during the NIL process. In this work, the squeezing and filling of thin polymer films into nanocavities during the low temperature thermal NIL have been investigated based upon a two-dimensional viscoelastic finite element analysis in order to understand how the process conditions affect a pattern quality; Pressure and initial polymer resist thickness dependency of cavity filling behaviors has been investigated.

A Surge Voltage Distribution Analysis of 2MVA Cast Resin Transformer Winding with FEM Simulation (FEM 시뮬레이션을 이용한 2MVA 몰드변압기 권선간 써지전압 분배 해석 기법 연구)

  • Jang, Hyeong-Taek;Shin, Pan-Seok
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.5
    • /
    • pp.15-21
    • /
    • 2011
  • This paper presents an analyzing method of the capacitance of the power transformer for initial voltage distribution and insulation design. When a high incoming surge voltage is accidently occurred in windings of transformer, it does not distribute equally in the windings. This phenomenon makes electric field concentration and the insulating material could be break. Initial voltage distribute mostly depends on capacitances between winding to winding or winding to core in the transformer. If the C network can be structuralized into the equivalent circuit model and be calculated each capacitance element value by circuit analysis and FEM(Finite Element Method) simulation program, the transformer designer could know the place where the structure is to be modified or the insulation to be reinforced. This method quickly provides the data of the voltage distribution in each winding to the designer.

Numerical Study on Sheet Metal Forming Analysis Using the One-Step Forming (One-Step Forming을 이용한 박판성형 해석에 관한 연구)

  • Ahn H. G.;Ko H. H.;Lee C. H.;Ahn B. I.;Moon W. S.;Jung D. W.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.419-422
    • /
    • 2005
  • Many process parameters have an effect on the auto-body panel forming process. A well-designed blank shape causes the material to flow smoothly, reduces the punch and yields a product with uniform thickness distribution. Therefore, the determination of an initial blank shape plays the important role of saving time and cost in the auto-body panel forming process. For these reasons, some approaches to estimate the initial blank shape have been implemented in this paper, the one-step approach by using a finite element inverse method will be introduced to predict the initial blank shape the developed program is applied to auto-body panel forming.

  • PDF

Trimming Line Design using Incremental Development Method and Finite Element Inverse Method (점진 전개기법 및 유한요소 역해석법을 이용한 자동차 패널 트리밍 라인 설계)

  • Chung, W.J.;Park, C.D.;Song, Y.J.;Oh, S.W.
    • Transactions of Materials Processing
    • /
    • v.15 no.6 s.87
    • /
    • pp.445-452
    • /
    • 2006
  • In most of automobile body panel manufacturing, trimming process is generally performed before flanging. To find feasible trimming line is crucial in obtaining accurate edge profile after flanging. Section-based method develops blank along manually chosen section planes and find trimming line by generating loop of end points. This method suffers from inaccurate results of edge profile. On the other hand, simulation-based method can produce more accurate trimming line by iterative strategy. In this study, new fast simulation-based method to find feasible trimming line is proposed. Finite element inverse method is used to analyze the flanging process because final shape after flanging can be explicitly defined and most of strain paths are simple in flanging. In utilizing finite element inverse method, the main obstacle is the initial guess generation for general mesh. Robust initial guess generation method is developed to handle genera] mesh with very different size and undercut. The new method develops final triangular mesh incrementally onto the drawing tool surface. Also in order to remedy mesh distortion during development, energy minimization technique is utilized. Trimming line is extracted from the outer boundary after finite element inverse method simulation. This method has many advantages since trimming line can be obtained in the early design stage. The developed method is verified by shrink/stretch flange forming and successfully applied to the complex industrial applications such as door outer flanging process.